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ABSTRACT 
 

The state of the art in machine vision inspection and a critical overview of real-world applications 

are presented in this paper. Two independent ways to classify applications are proposed, one 

according to the inspected features of the industrial product or process and the other according to 

the inspection independent characteristics of the inspected product or process. The most 

contemporary software and hardware tools for developing industrial vision systems are reviewed. 

Finally, under the light of recent advances in image sensors, software and hardware technology, 

important issues and directions for designing and developing industrial vision systems are 

identified and discussed. 

Keywords: Machine vision, automated visual inspection, image processing, image analysis. 
 

1 INTRODUCTION 
Machine vision provides innovative solutions in the direction of industrial automation [1]. A 

plethora of industrial activities have benefited from the application of machine vision technology 

on manufacturing processes. These activities include, among others, delicate electronics 

component manufacturing [2], quality textile production [3], metal product finishing [4], glass 

manufacturing [5], machine parts [6], printing products [7] and granite quality inspection [8], 

integrated circuits manufacturing [9] and many others. Machine vision technology improves 
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productivity and quality management and provides a competitive advantage to industries that 

employ this technology. 

1.1 OVERVIEW ON INDUSTRIAL VISION SYSTEMS 

Traditionally, visual inspection and quality control are performed by human experts [10]. 

Although humans can do the job better than machines in many cases, they are slower than the 

machines and get tired quickly. Moreover, human experts are difficult to find or maintain in an 

industry, require training and their skills may take time to develop. There are also cases were 

inspection tends to be tedious or difficult, even for the best-trained experts. In certain 

applications, precise information must be quickly or repetitively extracted and used (e.g., target 

tracking and robot guidance). In some environments (e.g., underwater inspection, nuclear 

industry, chemical industry etc.) inspection may be difficult or dangerous. Computer vision may 

effectively replace human inspection in such demanding cases [11]. 

Main Processor or 
Computer with 
Image Processing 
Software 

Camera(s) 
Illumination 

Manufacturing Process 
Control Systems 
Robot(s), PLC(s), etc. 

Image Processing 
Hardware 

Network Interface   

 

Figure 1: A typical industrial vision system. 

Figure 1 illustrates the structure of a typical industrial vision system. First, a computer is 

employed for processing the acquired images. This is achieved by applying special purpose 

image processing analysis and classification software. Images are usually acquired by one or 

more cameras placed at the scene under inspection. The positions of the cameras are usually 

fixed. In most cases, industrial automation systems are designed to inspect only known objects at 

fixed positions.  The scene is appropriately illuminated and arranged in order to facilitate the 

reception of the image features necessary for processing and classification. These features are 
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also known in advance. When the process is highly time-constrained or computationally intensive 

and exceeds the processing capabilities of the main processor, application specific hardware (e.g., 

DSPs, ASICs, or FPGAs) is employed to alleviate the problem of processing speed. The results of 

this processing can be used to:  

• Control a manufacturing process (e.g., for guiding robot arms placing components on 

printed circuits, painting surfaces etc.). 

• Propagated to other external devices (e.g., through a network or other type of interface 

like FireWire) for further processing (e.g., classification). 

• Characterize defects of faulty items and take actions for reporting and correcting these 

faults and replacing or removing defective parts from the production line. 

 
The requirements for the design and development of a successful machine vision system 

vary depending on the application domain and are related to the tasks to be accomplished, 

environment, speed etc. For example, in machine vision inspection applications, the system must 

be able to differentiate between acceptable and unacceptable variations or defects in products, 

while in other applications, the system must enable users to solve guidance and alignment tasks 

or, measurement and assembly verification tasks. 

There exists no industrial vision system capable of handling all tasks in every application 

field. Only once the requirements of a particular application domain are specified, then 

appropriate decisions for the design and development of the application can be taken. The first 

problem to solve in automating a machine vision task is to understand what kind of information 

the machine vision system is to retrieve and how this is translated into measurements or features 

extracted from images. For example, it is important to specify in advance what “defective” means 

in terms of measurements and rules and implement these tasks in software or hardware. Then, a 

decision has to be made on the kind of measurements to be acquired (e.g., position or intensity 

measurements) and on the exact location for obtaining the measurements.  

For the system to be reliable, it must reduce “escape rates” (i.e., non-accepted cases 

reported as accepted) and “false alarms” (i.e., accepted cases reported as non-accepted) as much 

as possible. It is a responsibility of the processing and classification units to maintain system 

reliability, but the effectiveness of classification depends also on the quality of the acquired 

images. An industrial vision system must also be robust. Thus, it should adapt itself automatically 

and achieve consistently high performance despite irregularities in illumination, marking or 
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background conditions and, accommodate uncertainties in angles, positions etc. Robust 

performance is difficult to achieve. High recognition and classification rates are obtained only 

under certain conditions of good lighting and low noise. Finally, an industrial vision system must 

be fast and cost efficient.   

In this survey, we emphasize the important attributes of an industrial machine vision 

inspection system such as, flexibility, efficiency in performance, speed and cost, reliability and 

robustness. In order to design a system that maintains these attributes it is important to clearly 

define its required outputs and the available inputs. Typically, an industrial inspection system 

computes information from raw images according to the following sequence of steps:   

1. Image acquisition: Images containing the required information are acquired in digital 

form through cameras, digitisers etc.  

2. Image processing:  Once images have been acquired, they are filtered to remove 

background noise or unwanted reflections from the illumination system. Image restoration 

may also be applied to improve image quality by correcting geometric distortions 

introduced by the acquisition system (e.g., the camera).  

3. Feature extraction: A set of known features, characteristic for the application domain, is 

computed, probably with some consideration for non-overlapping or uncorrelated features 

[12], so that better classification can be achieved. Examples of such features include size, 

position, contour measurement via edge detection and linking, as well as and texture 

measurements on regions. Such features can be computed and analyzed by statistical or 

other computing techniques (e.g. neural networks or fuzzy systems). The set of computed 

features forms the description of the input image.  

4. Decision-making: Combining the feature variables into a smaller set of new feature 

variables reduces the number of features. While the number of initial features may be 

large, the underlying dimensionality of the data, or the intrinsic dimensionality, may be 

quite small. The first step in decision making attempts to reduce the dimensionality of the 

feature space to the intrinsic dimensionality of the problem. The reduced feature set is 

processed further as to reach a decision. This decision, as well as the types of features and 

measurements (the image descriptions) computed, depends on the application. For 

example, in the case of visual inspection during production the system decides if the 

produced parts meet some quality standards by matching a computed description with 
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some known model of the image (region or object) to be recognized. The decision (e.g., 

model matching) may involve processing with thresholds, statistical or soft classification. 

At the last level of decision-making and model matching mentioned above, there are two 

types of image (region or object) models that can be used namely, declarative and procedural. 

Declarative models consist of constraints on the properties of pixels, objects or regions and on 

their relationships. Procedural models are implicitly defined in terms of processes that recognize 

the images. Both types of models can be fuzzy or probabilistic, involving probabilistic constraints 

and probabilistic control of syntactic rules respectively. A special category of models is based on 

neural networks.  

Model-based approaches often require that descriptions (e.g., features) of the image at 

different levels of specificity or detail be matched with one of possible many models of different 

classes of images. This task can become very difficult and computationally intensive if the 

models are complex and a large number of models must be considered. In a top-down approach 

to model matching, a model might guide the generation of appropriate image descriptions rather 

than first generating the description and then attempting to match it with a model. Another 

alternative would be to combine top-down and bottom-up processes. The above control strategies 

are simplified when one is dealing with two-dimensional images taken under controlled 

conditions of good lighting and low noise, as it is usually the case in industrial vision 

applications. Image descriptions and class models are easier to construct in this case and complex 

model matching can be avoided. Model-based approaches to visual inspection tasks [13] have 

been applied in a variety of application fields and many of them are reviewed in the following 

sections. 

1.2 DEVELOPMENT APPROACHES AND ENVIRONMENTS 

The development of a machine vision system begins with understanding the application’s 

requirements and constraints and proceeds with selecting appropriate machine vision software 

and hardware (if necessary) to solve the task at hand. Older machine vision systems were built 

around low-level software, requiring full programming control. They were based on simple frame 

grabbers providing low-level interface capabilities with other system components. They were also 

characterized by low-level user interfaces, low-level image analysis capabilities and difficulties in 

system integration and maintenance. Eventually, machine vision inspection systems became more 

modular, providing more abstract capabilities for system development and maintenance and 

reaching higher level of robustness.  
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Today’s applications need environments that are developed in short time and are adjusted 

to modifications of the manufacturing process.  In addition, the system must be simple to operate 

and maintain. The key here is to select an appropriate development environment providing 

Graphical User Interfaces (GUIs) or other programming tools (see Section 3 of this survey). 

Through GUIs and visual programming tools, even non-vision experts but authorized users like 

e.g., manufacturing engineers, are allowed to interact with the application and specify sequences 

of operations from pull-down menus offering access to large pools of tested algorithms. 

Programming is easier in this case, since the algorithms are selected based on knowledge of what 

they do and not on how they do it. The use of GUIs shifts the effort of application development to 

the manufacturing engineer from the programmer expert, as in the earlier days of machine vision 

systems. This feature not only results in faster and cheaper application developments, but also 

allows addressing several applications with a single piece of re-configurable software (i.e., the 

application development tool).  

Industrial vision systems must be fast enough to meet the speed requirements of their 

application environment. Speed depends on the task to be accomplished and may range from 

milliseconds to seconds or minutes. As the demands of processing increase, special purpose 

hardware is required to meet high-speed requirements. A cost saving feature of industrial vision 

systems is their ability to meet the speed requirements of an application without the need of 

special purpose hardware. PCs and workstations are nowadays fast enough so that this can be 

achieved in many application domains, especially in those with less demanding run time 

requirements [14, 15].  

Advances in hardware technology in conjunction with the development of standard 

processing platforms have made the production and maintenance of industrial automation 

systems feasible at relatively low cost. Pentium PCs with Windows NT (Windows 2000, XP) or 

UNIX based systems like Linux are considered the main alternatives with Windows being 

preferred to achieve labor saving application development with maximum portability based on 

ready-to-use software (e.g., commercially available software). Linux is becoming eventually a 

standard especially in cases where customized or cost saving solutions are preferred. Linux is 

sometimes offered as open-source freeware and appears to be the ideal solution in the case of 

dedicated applications where independency on vendor specific software has to be achieved. 

However the limited availability of application development tools (e.g., interfacing software) is a 

serious drawback of Linux. 
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1.3  APPLICATIONS OF INDUSTRIAL VISION SYSTEMS 

Interesting surveys specializing in a single application field include among others Ref. [16] for 

automatic PCB inspection, Ref. [17] for wood quality inspection, and Ref. [18] for automatic fruit 

harvesting. Other important general reviews that cover all the fields of visual inspection have 

been published in Ref. [13], whereas model-based approaches to visual inspection are considered 

in [19] and [20] and more recently in [21, 22] and [23]. In Ref. [21], a classification of automated 

visual inspection applications is presented based on the type of images to be processed. Binary, 

gray-scale, color, and range image systems are considered, each one showing certain 

characteristics in the context of the particular application field being used. In Ref. [22] and [23] 

on the other hand, machine vision systems are classified according to the qualitative 

characteristics of the objects or processes under inspection. Three classes are presented, namely 

dimensional verification, surface detection, and inspection of completeness.  

1.4  CONTRIBUTIONS AND STRUCTURE OF THE SURVEY 

In this survey, we present an overview of machine vision applications in the industrial 

environment. Two independent ways of classifying industrial vision applications are proposed. 

First, industrial vision applications are classified according to the inspected features of the 

industrial product of process in four categories, namely: (a) Dimensional quality, (b) Structural 

quality, (c) Surface quality and (d) Operational quality. Industrial vision applications are also 

classified in terms of flexibility according to the so-called “Degrees of Freedom” (DoFs) that 

form inspection independent features. This classification enables the evaluation of tools intended 

towards similar industrial vision applications. A variety of software and hardware solutions 

available for the development of applications are presented. Finally, the future trends of machine 

vision technology are also discussed.  

The rest of this survey is organized as follows: In Section 2, a review of the recent 

literature in industrial vision along with our proposed classifications of industrial vision 

applications is presented. Issues related to the development of industrial vision systems are 

discussed in Section 3. A variety of software and hardware tools that can be used to assist the 

development of machine vision inspection systems in the industry are also presented in this 

section. Future trends in the field are presented and discussed in Section 4, followed by 

concluding remarks in Section 5. 
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2 CLASSIFICATION OF INDUSTRIAL VISION APPLICATIONS 
In modern industrial-vision-system research and development, most applications are related to at 

least one of the following four types of inspection:  

1. Inspection of dimensional quality,  

2. Inspection of surface quality,  

3. Inspection of correct assembling (structural quality) and  

4. Inspection of accurate or correct operation (operational quality).  

A formalization of the above categorization is attempted in the following, by probing 

further onto the characteristics of products being inspected. Table 1 gathers some of the most 

ordinary inspected features of products [1]. 

Dimensional Dimensions, shape, positioning, orientation, alignment, roundness, 
corners 

Assembly Holes, slots, rivets, screws, clamps  
Structural 

Foreign objects Dust, bur, swarm 

 
Surface 

Pits, scratches, cracks, wear, finish, roughness, texture, 
seams-folds-laps, continuity 

Operational Incompatibility of operation to standards and specifications 

Table 1: Potential features of inspected products. 

Notice that, despite the inherent differences in the nature of the four categories of 

inspection, they are all reduced to the action of confirmation of quality standards satisfaction, 

which is, in most cases, a binary (“yes/no”) decision. Figure 2 illustrates this relationship. 

 T he inspection 
Problem :  

Q uality Verification

Q uality of 
D im ensional 

C haracteristics 

Assem bly - 
Structural 

Q uality

Q uality of 
Surface 

C haracteristics

O perational  
Q uality 

 

Figure 2: Major categories of industrial vision applications. 

Industrial vision applications may also be classified based on features whose 

measurements do not affect the inspection process (may take any value) allowing the system to 
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be independent on these types of features. The set of such features defines the so-called “Degrees 

of Freedom” (DoFs) of the inspection process. Some of the most common DoFs met in the 

industrial world are shown in Figure 3 and concern shape, geometrical dimensions, intensity, 

texture, pose, etc. The DoFs of objects are strongly related to the variances of their characteristics 

and are considered to be a measure of the flexibility of the vision system. 

 Object Degrees of Freedom  (DOF): 
Flexibility Characterization 

Shape Colour TexturePose Illumination Size 
 

Figure 3: Major DoFs of industrial vision systems. 

The less the DoFs the stronger the dependency of the inspection system on the application 

for which it is originally designed. Therefore, systems with low DoFs are less likely to be 

expandable. High levels of variability, on the other hand, are characteristic of more general or 

expandable systems. To allow many DOFs, the system must employ sophisticated image 

classification approaches based on carefully selected models and algorithms, as to minimize its 

dependency on the inspected item and its potential deformations. Moreover, the more the DoFs of 

a system the greater its potential for expandability. For example, the system can be enhanced to 

detect new types of defects if additional image processing and analysis functions are introduced 

to the system and applied independently from the old ones to capture more image features (e.g., 

capture surface in addition to dimensional characteristics). The above considerations concerning 

the proposed classification based on DoFs reveals a known trade-off in the design of inspection 

systems between flexibility, complexity and cost which is not obvious in other classifications. 

Table 2 illustrates the relationship between DOFs and quality inspection systems 

developed for applications discussed in the survey. Most applications focus on the inspection of a 

single characteristic (e.g., size). The remaining characteristics (e.g., finish, texture, etc.) can be 

considered as DOFs for these applications indicating the flexibility of the vision system. 

However, not all of them are equally important. In the rest of this survey, only the important 

characteristics that relate to an application are discussed. 
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QUALITY 
INSPECTION 

REFE-
RENCE 

APPLICATION  
FIELD 

DEGREES OF FREEDOM  
(DOFS) 

[24] Mini resistor painting Resistor orientation 
[25] Aluminium sheet casting Sheet width 
[26] Railroad line inspection Illumination/Rail-foot –head position, 
[27] Oil seals Illumination 
[28] Chicken meat defects Illumination/Skin  
[9] Wafer surface inspection Distortion/Scale/Orientation/Position 

[29] Surface approximation Illumination 
[8] Granite surface inspectopn Texture 

[30] Directional texture  Illumination/Rotation of direction 
[31] Surface roughness Orientation 
[32] Surface defects Pose 
[3] Textile seam defects Translation/Rotation 

[17] Internal wood defects Wood density 
[33, 34] Wood veneer surface Scale/Intensity 

 
 
 

S 
U 
R 
F 
A 
C 
E 

[35] Surface corrosion Shape 
[36] Machined parts inspection Scale/Translation/Orientation 
[37] Solder joints inspection Orientation 
[38] Solder joints inspection Orientation/Position 
[12] Solder joints inspection Position/Orientation/Size 
[39] External screw threads Thread position 
[7] Banknotes inspection Position 

[40] Image segmentation Shape/Texture 
[15] Object classification Scale/Orientation 
[41] Object classification Shape 

[42, 43] Circular parts Peripheral occlusion 
[44] Packaging Position/Orientation 
[45] Line segment measurement Orientation/Scale 

[18, 46] Fruit harvesting Maturity/Illumination/Occlusion 
[47] Packaging Shape/Size 
[48] Packaging Illumination/Shape 

 
 

D 
I 

M 
E 
N 
S 
I 
O 
N 
A 
L 
 
 

[49] Automotive industry Size/Shape/Pose 
[50] Object assembly Orientation (limited) 
[51] Railroad parts inspection Illumination/Shape 
[52] Railroad parts inspection Illumination/Shape/Texture 
[53] Automotive industry  Illumination/Position 
[54] Automotive industry Illumination/Position/Shape/Size 

 
STRU- 
CTU- 
RAL 

[55] PCB inspection Illumination 
[56] Laser butt joint welding  Welding path Shape/Gap size/Beam position OPERATIONAL 
[57] Wrist watch quality  Hands Shape/Size/Orientation/Distortion 

 
Table 2:  Classification of industrial vision systems. 

 

2.1 DIMENSIONAL QUALITY 

Checking whether the dimensions of an object are within specified tolerances or the objects have 

the correct shape, are ordinary tasks for industrial vision systems. Such tasks involve inspection 

of geometrical characteristics of objects in two or three dimensions and are related to the first of 

 10



the four types of inspection defined in the previous section, namely the inspection of dimensional 

quality. 

Various industries are involved in the development of vision systems for automated 

measurement of dimensional quality. In packaging industry, the tasks vary from measurements of 

the fill level in bottles, to sell by date inspection and to airbag canister inspection (e.g., online 

gauging systems that measure height, concentricity and diameter of airbag canisters). In Ref. 

[48], a vision-guided system for the automated supply of packaging machines with paper and foil 

material is presented. The system enables the manipulator to locate the proper bobbin, depalletize 

it and transfer it to the requesting machine. A similar application is addressed in [44] were, a 

vision system is used to determine the correct position of pallets and recognize the arrangement 

pattern of sacks on the pallets. The system enables a robot mechanism to grasp the sacks and pass 

them along a rotating cutting disk.  

A popular and demanding real-time application is the inspection and classification of 

solder joints on Printed Circuit Boards (PCBs). A typical inspection system for this application 

consists of a camera with appropriate illumination placed on top of the PCB conveyor system 

[37]. Processing PCB images consists of two major stages: First a pre-processing is performed in 

order to remove noise and make the tracking of solder joints on the image of the PCB easy. Then, 

the solder joints are classified according to the types of defects. The usual classification is 

concerned with the quantity of the solder paste placed on a joint. Four classes are defined, namely 

good, excess solder, insufficient and no solder. Simulation results on geometric models of joints 

have shown that efficient classification can be achieved only by an optimal feature selection, so 

that the classes do not overlap [12]. Current research has shown that histogram-based techniques 

[38] perform better than two and three-dimensional feature-based techniques [37], both in terms 

of system and computational complexity. The major problem is that two-dimensional features 

alone are insufficient for correct classification and an extra classifier is required to separate 

overlapping classes. In Ref. [58], it is shown that a combination of histogram and 2D, 3D feature-

based techniques can overcome the performance of other techniques relying only on topological 

features. Many PCB inspection systems rely on neural networks for the design of classifiers that 

can deal with both distribution (histogram) and topological features of defects. 

An approach to the problem of cutting two-dimensional stock sheets is reported in [47]. A 

machine vision system is employed to acquire images of irregularly shaped sheets. Then, a 

genetic algorithm is applied to generate part layouts that satisfy the manufacturing constraints 
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(e.g., minimization of trim loses). This method is particularly useful for the leather and apparel 

industries, were irregular parts are commonly used.  

An automatic visual system for the location of spherical fruits on trees, under natural 

conditions, is presented in [18]. The system utilizes a laser range finder that provides range and 

attenuation data of the inspected fruit surface and shape analysis algorithms are employed to 

process the acquired reflectance and range images to locate the fruit and, finally, to determine the 

position of the fruit on the tree. Experimental results report 74% detection over green (low degree 

of ripeness) fruits and 100% detection of visible fruits. In [46] the above system is embedded in 

the AGRIBOT integrated robotic system, aimed at the automatic harvesting of fruits. 

The problem of measuring line segments, a primary machine vision problem, is addressed 

in [45]. A heuristic algorithm for line segment measurement is proposed and used to assess the 

efficiency of a machine vision system in accurately measuring properties of line segments, such 

as length, angle and straightness. A similar application concerns the detection of circular parts 

with peripheral defects or irregularities [43]. A two-stage Hough transform is applied for the 

detection of circular machine parts. 

A model-based computer vision system for the estimation of poses of objects in industrial 

environments, at near real-time rates, is presented in [15]. A demanding real time application is 

the detection of high quality printed products [7]. This application deals with products with high 

degree of resemblance, where minor differences among them makes the application very difficult 

to cope with, considering its real-time nature. An original algorithm based on morphological 

operations facilitates the detection of flaws at near-pixel resolution. The system is applied for the 

inspection of banknotes, which is clearly a very delicate application, considering the requirements 

in the validity of the produced printings. 

An interesting application in this category deals with the inspection of screw threads for 

compliance with manufacturing standards [39]. Edge detection algorithms (based on linear 

interpolation to the sub-pixel resolution) are applied to detect regions of interest. Each such 

region is matched with multiple models of threads, since the dimensions and positions of the 

inspected threads are allowed to vary. The system has been tested on the production line and has 

been shown to perform better than other competitive methods, such as manual measurement. 

Active Shape Models as the basis of a generic object search technique are employed in [49]. The 

approach is based on the identification of characteristic or “landmark’’ points (i.e., points that 

exist in all aspects of the object) in images and on the recording of statistics concerning the 
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relationships between the positions of the landmark points in a set of training examples. The 

effectiveness of the approach is demonstrated on inspection of automotive brake assemblies. 

2.2 SURFACE QUALITY 

Inspecting objects for scratches, cracks, wear, or checking surfaces for proper finish, roughness 

and texture, are typical tasks of surface quality inspection. Significant labour savings are 

achieved in textile, wood and metal industries employing vision systems for fault detection and 

quality verification.  

In [3], the quality of textile seams is assessed using feature classification (based on self-

organizing neural networks). The system also enables the expedition of seam quality judgement, 

compared to human inspection, by locating seams on images of low contrast and then inspecting 

the waviness of the seam specimens (this information is in fact three-dimensional).  

CATALOG [17] is a system for internal wood log defects detection, based on Computer 

Axial Tomography (CAT or CT). Sequences of CT image slices are acquired and each one is 

segmented into two-dimensional regions. Each segmented image slice is analyzed and is 

characterized as defect-free or defect-like. The correlation of defect-like regions across a CT 

sequence enables the three-dimensional reconstruction of the log defects. In [33], the use of a 

decision tree in combination with a modular neural network topology is shown to be more 

efficient than a single large neural network alone for the classification of wood veneer. The 

design of this topology is based on normalized inter-class variation of features for separating 

between classes. An improved version of this topology [34], based on intra-class variation of 

features, allows for the reduction of the complexity of the neural network topology and results in 

improved classification accuracy. A review of research activities for locating defects on wood 

surfaces is presented in [17]. 

Machine vision can also be used for the inspection and visualization of defects on ground 

or machined components (e.g., cracks, pitting and changes in material quality). Segmentation 

techniques for the detection of characteristic surface faults (e.g., indentations, protrusions) are 

proposed in [32]. Similar techniques are applied for the detection of scratches during machine 

polishing of natural stone. The assessment of surface roughness of machined parts is addressed in 

[31]. Fourier transform is applied first for the extraction of roughness measures. Then, neural 

networks are employed for the classification of surfaces based on roughness. The inspection of 

defects on objects with directionally textured surfaces (e.g., natural wood, machined surfaces and 

textile fabrics) is addressed in [30]. A global image restoration scheme based on Fourier 
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transform is applied. High frequency Fourier components corresponding to line patterns are 

discriminated from low-frequency ones corresponding to defective regions. An alternative 

approach for the inspection of randomly textured color images is presented in [8]. This method 

considers both color and texture image properties and introduces a color similarity measure that 

allows the application of the watershed transform. The problem of recovering depth information 

for surface approximation of objects is examined in [29]. This is achieved using stereo image 

pairs, a Scanning Electron Microscope (SEM) and involves computation of disparity estimates 

utilizing a feature-based stereo algorithm.  

The use of a finite-window robust sequential estimator for the detection and analysis of 

corrosion in range images of gas pipelines is presented in [35]. Deviations from the robust surface 

fit (which correspond to statistical outliers) represent potential areas of corrosion. The algorithm 

estimates surface parameters over a finite sliding window. The technique is shown to be robust in 

that it estimates the pipeline surface range function in the presence of noise, surface deviations 

and changes in the underlying model. Despite the fact that the method exhibits real-time 

execution capability, it fails to interpret correctly the combinations of high magnitude and high 

frequency ripples with large patches of corrosion. 

Surface inspection is also applied to the aluminium strip casting process. Infrared (IR) 

temperature measurements (providing a measure of the distribution of surface temperature) are 

used to evaluate the quality of aluminium sheets. A two level process for the inspection of 

aluminium sheets is addressed in [25]. First, the system inspects both sides of an aluminium sheet 

and captures images of potential defective areas. These images are then classified according to 

defect type and stored for review by experts. In [9], machine vision is applied for the inspection 

of wafer surfaces in Integrated Circuits (IC) production.  A fuzzy membership function is used to 

cope with the wide range of shape variations of the dimple defects. 

Potential applications of surface quality inspection also include detection of damages on 

railroad tracks [26], where on-board detection and classification of defects is performed in real 

time. Exhaustive (100%) quality inspection of painting of metal film mini resistors is addressed 

in [24], were detection of low quality products is achieved by the acquisition of a line pattern 

image of a correctly painted resistor, which is compared with each acquired line pattern image. 

Inspection of machined parts (e.g., circular oil seals) is reported in [8], where both surface and 

dimensional qualities are verified. The centre of each circular seal is computed and the intensities 

of its circumferential pixels are inspected.  
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In food industry, the inspection of the quality of goods is of primary interest. In [28], an 

intelligent system for the detection of defects on chicken meat before packaging is presented. The 

system relies on the analysis of chromatic content of chicken images, the extraction of potential 

defective areas by morphological processing and their classification according to a predefined list 

of defects.  

2.3 STRUCTURAL QUALITY 

Checking for missing components (e.g., screws, rivets, etc.) on assembled parts or checking for 

the presence of foreign or extra objects (e.g., leaves, little sticks) are typical tasks of this class of 

quality inspection.  

In semiconductor and electronic industries, the tasks vary from connector presence, 

capacitor polarity checking, Integrated Circuit (IC) pin gauging, IC identification, IC alignment 

and positioning, to information gathering tasks such as automatic defect classification on 

electronic circuit boards etc. For example, a connector inspection system is designed in [16], 

which is fast and capable of detecting bent pins on connectors with 20-1000 pins. 

The work in [55] deals with inspection of structural quality of PCB components. The 

inspected objects (electronic components) are assumed to have little variations in size or shape 

but significant variation in grey-level appearance. Statistical models of the intensity across the 

objects structure in a set of training examples are built. Subsequently, a multi-resolution search 

technique is used to locate the model that matches a region of an input image. A fit measure with 

predictable statistical properties is also used to determine that this region is a valid instance of the 

model. The method demonstrates failure rates that are acceptable for use in a real environment 

(i.e., 1 in 1000 samples). 

Template matching methods for the detection of anomalies in a car assembly line in real 

time is proposed in [53]. Templates corresponding to four image regions of a car are selected by a 

human supervisor and are analysed by the system. This work is part of an integrated system for 

automatic inspection of a complete car assembly line. A second part of the same system aimed at 

the inspection of the condition of vehicle doors is presented in [54]. In order to detect whether a 

vehicle door is open or closed, a line-fitting algorithm is applied. 

The detection of components of railroad lines is addressed in [26] and [52]. Filtering 

techniques for detecting rail clamps and neural networks for detecting screws are employed in 

[51]. The detection of wooden ties of rail lines in real time is presented is addressed in [52]. The 
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system enables the detection of tie boundaries on rail line images. An adaptive edge detector 

based on a modified Marr-Hildreth operator is employed to cope with the steep transitions in the 

image resulting from wood grain. A stochastic model-based inspection algorithm (based on 

Bayesian estimation) for the detection of assembly errors on rigid objects in presented in [50]. 

The image models describe the appearance of a complex three-dimensional object in a two-

dimensional monochrome image. This method is applied for verifying correct assembly in a gear 

assembly line and a VHS cassette production line. 

2.4 OPERATIONAL QUALITY 

Inspection of operational quality is related to the verification of correct or accurate operation of 

the inspected products according to the manufacturing standards.  

 The inspection of laser butt joint welding is addressed in [56]. A camera captures the 

welding seam track and determines the proper welding path and gap size. A noise-eliminating 

step is applied first. Then, the welding path and gap are calculated on segmented welding images. 

Segmentation is based on Laplacian filters. The information computed above enables the control 

of the laser for the automatic welding of butt joints. Quality inspection of wristwatches is 

addressed in [57]. All inspected watches are first synchronized with a reference clock. Images of 

watch hands are acquired by a camera and are classified as hour, minute, second, and 24-hour 

hands. The difficulty of this task stems from the overlapping of hands, as well as from the 

existence of a curved magnifying glass over the date window of the watch, which corrupts the 

clarity of captured images of hands. To compensate for such problems, the time that a watch 

shows is detected and compared with the time of the reference clock using neural network 

classifiers.  

3 DEVELOPMENT OF INDUSTRIAL VISION SYSTEMS 
Today’s machine vision systems can be regarded as consisting from standard platform 

components. The migration to standard PC-based platforms also standardized networking, backup 

and storage technologies. Powerful Graphical User Interface (GUI) environments running on PCs 

coupled (if necessary) with image processing accelerators provide the core technologies 

necessary for building powerful, user-friendly machine vision environments at moderate cost. 

System development involves integration of software and hardware tools into a complete 

application. Today’s machine vision systems are offering far easier integration of various 

components originating from various software and hardware vendors. Even conventional 
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programming environments such as C and C++ allow for software components to be embedded 

into a single system. 

With the advent of new hardware for sensors, grabbers and computers, machine vision for 

industrial inspection tackles even more sophisticated problems. High complexity algorithms can 

nowadays be implemented for real time vision and new sensors (e.g., CMOS sensors) offering 

high dynamic range allow for more reliable, flexible and faster image acquisition than traditional 

CCD sensors, even under poor lighting conditions. At the same time, image-processing software 

has become user friendly and powerful utilizing software libraries implementing some of the 

most popular image processing and analysis algorithms. Most of these environments support 

both, visual programming in combination with flexible GUI interfaces and traditional 

programming. Both programming practices can be combined to facilitate application 

development. Visual programming can be employed to accelerate application’s prototyping 

whereas the final application can be implemented and optimized using standard programming 

methods and languages.  

The current trend in industrial vision is to use commercial products instead of customized. 

This reduces the effort and risk in developing new products and allows for immediate 

exploitation of new hardware. When higher performance is needed, specialized DSP processors 

can be used. The selection of the appropriate software tools is of crucial importance. A software 

tool must have the following desirable features: 

• Multi-processing level support: The type of processing in an industrial vision system 

varies from low level (e.g., filtering, thresholding), to medium level (e.g., segmentation, 

feature computation) and high level (e.g., object recognition, image classification etc.). An 

image software package must support all levels of functionality. Otherwise, different 

software tools must be adopted and integrated into the same system.  

• Ease of manipulation:  Graphical user interfaces, visual programming and code 

generation are typical features facilitating application development. Image functions must 

be categorized by type and scope so that even a non-expert may choose the appropriate 

function based mostly on what it does rather than on how it is done. 

• Dynamic range and frame-rate support: New types of sensors (e.g., CMOS sensors) 

offer high dynamic range and faster image acquisition (e.g., 16 bits per pixel instead of 8 
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bits per pixel).  Image software must support the processing of such high dynamic range 

images at variable frame rates. 

• Expandability: The software package must be able to accommodate new or better 

algorithms substituting old ones. In addition, the software package must easily adjustable 

to new requirements of the running application without major programming effort. 

• Dedicated hardware support: The software package must be able to work in 

collaboration with hardware (e.g., DSPs, ASICs, or FPGAs) to alleviate the problem of 

processing speed in the case of computationally intensive applications. 

In the following, a survey of popular software and hardware products for image processing 

and industrial inspection is presented. The tools of each category are discussed separately for ease 

of presentation. This list is by no means complete. However, it presents either the most 

commonly used or best-suited tools for industrial vision applications.  

3.1 SOFTWARE TOOLS 
This review includes image processing and analysis tools, as well as, tools based on neural 

networks, fuzzy logic and genetic algorithms. 

3.1.1 IMAGE PROCESSING AND ANALYSIS TOOLS 

Image processing is usually performed within rectangles, circles or along lines and arcs. Image 

processing operators include filtering (e.g., smoothing, sharpening), edge detection, thresholding, 

morphological operations etc. Such operations can be used to improve image quality (e.g., 

remove noise, improve contrast) and to enhance or separate certain image features (e.g., regions, 

edges) from the background. Image processing operations transform an input image to another 

image having the desired characteristics. 

Image analysis transforms images to measurements. In particular, image analysis is 

related to the extraction and measurement of certain image features (e.g., lines, and corners) and 

transforms these image features to numbers, vectors, character strings etc. For example, lines, 

regions, characters, holes, rips, tears can be gauged or counted. Image analysis involves feature 

extraction operations (e.g., Hough transform for line and curve detection) in conjunction with 

operations that measure average light intensity, texture, and shape characteristics such as Fourier 

descriptors, moments, edge thinning, edge connectivity and linking etc. The ultimate goal of 

image analysis is geared towards pattern recognition i.e., the extraction of features that can be 

used by classifiers to recognize or classify objects.  
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An image processing environment to be suitable for industrial inspection, must (at least) 

contain algorithms for edge and line detection, image enhancement, illumination correction, 

geometry transforms, Region of Interest (RoI) selection, object recognition, feature selection and 

classification.  Table 3 provides a review of some of the most popular image processing tools 

offering the desired functionality. These tools offer adequate features and performance for several 

applications involved in the industrial sector. In terms of combined software and hardware, there 

are four alternatives: (I) IM-PCI with IPL of Sherloc32/MVTools, (II) MaxPCI with PC Image 

Flow or WiT and (III) Matrox Genesis with Matrox Imaging Library and (IV) Philips Trimedia 

VLIW processor board with Rhapsody. 

 

Software Package Library Visual 
Programming

Command 
Line 

Dedicated H/W 
Available 

Source 
Code 

Khoros Yes Yes No No Yes 

SCIL-Image Yes Yes No No Yes 
LeadTools Yes Yes No   
IPL Lib Yes Yes No Yes No 
Sherlock32 / MVTools Yes Yes No Yes Yes 
Image-Pro plus Yes Yes No No No 
OPTIMAS Yes Yes No No No 
WiT Yes Yes Optional Yes No 
PC Image Flow Yes Yes Datacube Yes No 
Intel Image Processing Lib. Yes No MMX  No 
HALCON Yes Yes No No No 
VISION97 Yes  Yes (frame grabber) No No 

AdOculos Yes Yes No  No 
MIL Yes Yes Matrox Yes No 

Rhapsody Yes No No Yes No 

 
Table 3:  Image processing and analysis software tools. 

 

3.1.2 NEURAL NETWORKS (NNS) 

Neural Networks (NNs) are being successfully applied across a wide range of application 

domains in business, medicine, geology and physics to solve problems of prediction, 

classification and control. Neural networks are composed of a number of similar elementary 

processing units (neurons) connected together into a network [59]. Neurons are arranged in layers 

with the input data initializing the processing at the input layer. The processed data of each layer 

passes through the network towards the output layer. Neural networks adapt the weights of their 
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neurons during a training period based on examples, often with a known desired solution 

(supervised training). After sufficient training, the neural network is able to relate the problem 

data to the appropriate solution spaces, i.e. generate input/output relations, thus offering a viable 

solution to a new problem through examples [60]. They are capable of handling a variety of 

image classification tasks in industrial vision environments, ranging from simple gauging to 

advanced classification problems, such as fault detection, optical character recognition, operation 

prediction, engine monitoring and control etc. They can be used either as standalone techniques 

(e.g., wood [33], seam [3], surface roughness [31] inspection) or in conjunction with other 

methods (e.g., solder joint inspection) [37]. Neural networks have been applied in all classes of 

quality inspection introduced in Section 2, namely dimensional quality [36-38], surface quality 

[3, 31, 34], structural quality [51] and operational quality [57]. They are applicable in almost 

every situation where a relationship between input and output parameters exists, even in cases 

where this relationship is very complex and cannot be expressed or handled by mathematical or 

other modelling means.  

Table 4 summarizes the features of the most commonly used neural network tools. 

Beyond general purpose and stand-alone tools, there exist library tools, such as the SPRLIB and 

the ANNLIB (developed by the Delft University Technology at Netherlands) emphasizing on 

image classification and pattern recognition applications. Almost all tools provide a plethora of 

neural architectures, covering the most popular, as well as some less known. Some of them 

provide the ability for user defined topologies as well. 
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Package 
Name 

New 
Algorithms 

Types of NN Industrial 
Applications 

Package
or 

Library 

User 
Interface 

Code 
Generation 

or DLL 
Braimaker  Back-propagation  Software 

package 
Graphical C 

Neuro 
Solutions 

Offers user 
defined 
neural 
topologies 
and 
components 

Recurrent 
back propagation, 
back propagation 
through time 

Summaries of 
applications 
included 

Software 
package 

Graphical C++ /DLL 

G2 
NeurOnLine 

 Back propagation, 
RBF, Rho, auto 
associative 

Detailed  
petrochemical 
application 
included 

Software 
package 

Graphical  
object 
oriented 

 

SPRLIB 
ANNLIB 

Can build 
exotic 
network 
architectures 
using the 
same data 
types 

Back-propagation, 
pseudo-Newton, 
Levenberg-
Marquadt, 
conjugate gradient 
descent, BFGS, 
Kohonen maps 

 C/C++ 
Libraries

  

ILIB    C/C++ 
Libraries

  

Neural 
Connection 

 Multilayer 
Perceptron, RBF, 
Kohonen, 
Bayesian 

 Software 
Package 

Graphical  
 
 
 

DataEngine, 
v.i,ADL 

 Multilayer 
Perceptron, 
Kohonen, Feature 
map, Fuzzy, 
Kohonen network 

 Software 
Package 

Graphical C++ / DLL 

Trajan 3.0 Allows 
building of 
hybrid 
networks 

Offers all of the 
above 
architectures and 
training 
algorithms 

 Software 
Package 

Graphical DLL 

 
Table 4: Neural network tools. 

 

3.1.3 FUZZY SYSTEMS (FSS) AND NEURO-FUZZY SYSTEMS (NFSS) 
A variety of industrial vision applications of diverse nature have been benefited by the use of 

Fuzzy Systems (FSs) and Neuro-Fuzzy Systems (NFSs). Examples of such applications are cork 

quality inspection [61], identification of mechanical component dimensional tolerances [62], IC 

product quality control [63] etc. Fuzzy sets are based on decisions on linguistic variables, which 

get linguistic values described by fuzzy sets, called “membership functions” [64]. Their basic 

processing elements are fuzzy sets instead of numerical values. A fuzzy set can be considered as 

an extension of a classical (crisp) set in the form that a crisp set permits only full membership or 

no membership, whereas a fuzzy set permits partial membership with a certain degree. Thus, a 
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fuzzy set, say A, in a domain U is characterized by its membership function µA  that takes values 

in the real interval 0…1. For each x U∈ , µA x( )  expresses the degree of membership of this 

value to the set A, where 1 denotes full membership and 0 denotes no membership at all. For 

example a dimensional tolerance in length can define fuzzy sets “small”, “medium” and “large” 

with respect to its values, as illustrated in Figure 4:  
 

small medium    large

length (nm)

 60  90 120
m a xl 0

 1

 
Figure 4: Example of membership function definition for dimensional tolerance. 

Classical decision making systems usually try to avoid vague, imprecise or uncertain 

information. Fuzzy systems on the other hand, deliberately make use of this information through 

the membership functions that describe the degree to which a measurement belongs to certain sets 

or classes. The membership function is the essential component of a fuzzy set. Thus, the 

operations ‘intersection’, ‘union’ and ‘complement’ of fuzzy sets are defined via the membership 

functions of the sets involved. Input values are matched with the preconditions of “if-then” rules 

on fuzzy sets, describing the system’s behavior. This kind of structured knowledge provides the 

system with a rule based processing (or rule based reasoning) mechanism. This mechanism 

supports independent rules (i.e., changes in one rule do not effect the result of other rules). FSs 

and NNs differ mainly on the way they map inputs to outputs, the way they store information or 

make inference steps. Table 5 lists the most popular software and hardware tools based on FSs as 

well as on merged FSs and NNs methodologies.  

  Neuro-Fuzzy Systems (NFS) form a special category of systems that emerged from the 

integration of Fuzzy Systems and Neural Networks [65]. There are two major subcategories 

characterizing this integration namely:  “Neural Network Fuzzy Systems (NNFSs)” incorporating 

FSs represented on a Neural Network topology and “Fuzzy Neural Networks (FNNs)” which 

include Neural structures with a number of fuzzyfied parts [62]. NNFSs aim at providing fuzzy 

systems with automatic tuning methods typical to neural networks but, without altering their 
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functionality. Neural Network’s learning ability can be used to build membership functions and 

rules to encode system’s behavior. The learning techniques employed are mainly based on 

multilayer feed forward networks with the back-propagation algorithm. Fuzzy systems offer their 

users better in-sight of neural black box structures, by encoding structured information in the 

form of rules and by offering tools for exploring this knowledge.  

 FNNs retain the basic properties and architectures of NNs and simply fuzzify some of 

their elements. The system obtains increased flexibility in storing, recalling and associating 

information. Not only binary but also continues values can be given as inputs, which highly 

increases system robustness. Usually, fuzzified components result in higher training speed of 

NNs. Fuzzy Logic also makes neural models understandable and this increases user’s flexibility. 

There exist a large variety of Neuro-Fuzzy topologies in the literature, such as the Fuzzy 

ARTMAP in [66], the MCFC for speech recognition in [67], the ASAFES2 network in [68] etc. 

The most popular topology though is the ANFIS [69], which follows the general structure of 

Neural-Fuzzy systems [70] and moreover has an extra layer to perform normalization of rule’s 

firing strengths.  

Recently, Genetic Algorithms (GAs) [71] have also been employed to deal with certain 

tasks ns certain application domains. For example, an application of genetic algorithms in 

industrial vision is pattern detection, which defers from pattern matching in the sense that the 

item sought is not known in advance. The use of genetic algorithms has also been reported for the 

classification of objects [41], the detection of circular objects [42], image segmentation [40] as 

well as for the minimization of trim loses in cutting two-dimensional stock sheets [47] etc. Sugal 

2.1 (TRAJAN Software Ltd.) and the Generator (NEW LIGHT INDUSTRIES Ltd.) are the two 

packages that can simulate genetic algorithms for various purposes and provide complete control 

over these algorithms. The main difference between them is that, Generator is designed to interact 

with Excel while, Sugal is autonomous.  
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Software 
Package 

Requirements Code 
Generation 

Features* Hardware Support 

Mathematica Windows/Unix, 
Mathematica S/W 

No FS only, Variety of built-in 
functions 

No 

FIDE DOS/Windows, 
4MB RAM, 4MB 
HD, >386 

ANSI C/ Java/ 
MatLab/ 

Assembly 

FS only, High and low 
level debugging, waveform 
generator, composer 

MC6805, MC68HC05, 
MC68HC11, MC68HC16, 
MC68HC33x 

TILShell/ 
FuzzyCLIPS 

Windows, CLIPS 
(for Fuzzy 
CLIPS) 

C code FS only, Programming 
language, simulation 

VY86C570 dedicated fuzzy 
processor 

FCM Windows C Code, 
Assembly 

FS only, Neurally 
optimized description, 
high complexity of fuzzy 
systems 

NEC 17K/75X/ 78K0/78K3 
and V 
Panasonic MN1500, 
68HC11, 8051, Inmos 
Transputer T805 

MatLab Windows, Unix, 
Linux, HP, 
Solaris, Matlab 
S/W 

C code FS and NFS, ANFIS, 
Graphical Editors  

No 

DataEngine, V.i 
lib 

Windows, 
Labview(for the 
V.i library), 
Pentium, 64MB 
RAM, 50MB HD 

DLL FS and NFS, Graphical 
programming language, 
Signal and Image 
processing algorithms 

No 

FuzzyTECH+N
euroFuzzy 
Module 

Windows C code, 
Assembly, DLL 

FS and NFS, Fuzzy Design 
Wizard, Interface to other 
S/W 

Motorola 68HC12 MCU 

NeuFrame v.4 Windows C, C++, Java, 
MatLab 

FS and NFS, Variety of 
Neural Topologies 

No 

*: FS=Fuzzy System, NFS=Neuro-Fuzzy System 

Table 5: Fuzzy and neuro-fuzzy software systems. 

3.2 HARDWARE TOOLS 

Software implementations are often insufficient to meet the real time requirements of many 

industrial vision applications. The ever-increasing computational demands of such applications 

call for hardware tools implementing image processing algorithms. In the following ASICs, 

DSPs, FPGAs and general-purpose processors are considered as possible alternatives in dealing 

with the problem of processing speed. The choice among them has to be made taking into 

account issues such as, size of chip, power dissipation and performance. However, issues such as 

flexibility of usage, programming environment are now becoming of great importance for the 

application developers. Table 6 summarizes the characteristics of some commonly used image 

processing boards. 
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Board 

 
Processing chip 

 
Clock Speed 

 
Image 

Acquisition 

 
Video Display 

Image 
Processing 

Library 
TriMedia 
(Philips) 

DSP TM-1300 166 MHz Yes Yes Yes 

IM-PCI 
(Imaging 
Technology) 

ASIC 40 MHz Optional Optional Yes 

MaxPCI 
(Datacube) 

ASIC 40 MHz Yes Optional Yes 

PCI/C6600 
(Texas 
Instruments) 

DSP C6201 200 MHz Optional Optional Yes 

Genesis 
(Matrox) 

DSP C80 60 MHz Yes Yes Yes 

Mpact 2 
(Chromatic) 

ASIC 125 MHz Yes Yes Yes 

Mamba 
(Coreco) 

Pentium II 466 MHz No Optional Yes 

TPE3 (AG 
Electronics) 

PowerPC 7400 400 MHz Optional Optional Yes 

VigraVision 
(Visicom) 

FPGA Xilinx 
Virtex 

Up to 300 MHz Yes Yes Yes 

 
Table 6: Image processing boards. 

 

3.2.1 APPLICATION SPECIFIC INTEGRATED CIRCUITS (ASICS) 

There are several ways to perform hardware image processing. The first one is to build a circuit 

dedicated to the application using an ASIC. As algorithms become more complex, the future of 

ASIC design will use more and more Intellectual Property (IP) blocks available on the market 

either as a hardware black box units (i.e., layout cells) or software packages (in a hardware 

description language such as VHDL or Verilog). Development time decreases this way because 

these cells have already been validated on various technologies. Then, the design of ASICs 

consists of assembling IP blocks and putting some glue logic between them for their interface. 

The main disadvantage of the ASIC approach is that the circuit is usually limited to work 

for one application (e.g., the system developed in [29] for stereo vision). To overcome this 

limitation, programmability can be achieved using processor cores that are included in the ASIC. 

A few companies (e.g., ARM, I.C.COM, Clarkspur, DSP Group, Argonaut) propose RISC or 

DSP cores, mainly dedicated to portable applications (i.e., with low power consumption, but also 

with performances below what is achieved with packaged chips). One of the most attractive 

products comes from Argonaut with the ARC processor core. This is a 32-bit general purpose 

RISC processor offering a lot of flexibility. The core size is very small (i.e., lower than 16 kgates, 

about 2 mm2 area in a 0.35-µm technology) and the processor has high clock speed (i.e., greater 
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than 100 Mhz). A software tool allows for building a configuration adapted to the specifications 

of the application. For example, the synthesis can be targeted for area or for speed, the instruction 

cache size and the register file size can be adapted accordingly etc. VHDL code is then produced 

and can be synthesized in any technology. 

Reconfigurability is another way of dealing with the limited applicability of ASICs. 

Reconfigurable multiprocessor networks compromise the trade-off between the need for low 

network diameter and the limited number of interconnection links among processors. In [72], an 

ASIC architecture of this kind is presented. It enables the implementation of a variety of image 

processing algorithms for low and intermediate level computer vision, such as FFT, edge 

detection, template matching, Hough transform etc. The use of general purpose processing 

elements implementing several image processing tasks on the same architecture, is another way 

of dealing with the limitations of ASICs. Several approaches have been reported in the literature, 

including [73], with on-chip photo detectors for early visual processing [74], and [75] for high-

level image processing. 

3.2.2 DIGITAL SIGNAL PROCESSORS (DSPS) 

An alternative is to use a chip instead of a processor core. Many different processor architectures 

have being proposed. Each has its own advantages and disadvantages. The use of DSP boards for 

the fast execution of image processing algorithms has been extensively used in industrial vision 

applications with hard real-time constraints. Some popular DSP architectures are the TriMedia 

Mediaprocessor by Philips Semiconductors [76], IM-PCI by Imaging Technology, MaxPCI by 

Datacube, Texas Instruments (TI) TMS320Cxx Family, the Genesis Vision processor by Matrox 

based on the TI’s  TMS320C80 DSP and on the PCI platform, the Mpact media processor by 

Chromatic Research Inc. [77]  etc. 

3.2.3 GENERAL PURPOSE PROCESSORS 

General-purpose processors develop faster than DSPs. They run at much higher frequencies than 

their predecessors, approaching this way the performance of DSPs.  Intel with the MMX and the 

SIMD Instruction on the Pentium, AMD with the Athlon architecture and Motorola with the 

Altivec on the PowerPC, propose new coprocessor architectures dedicated to intensive 

computations on large sets of data, fitting well for image processing applications. The main 

advantage of the general-purpose processors is of course the programming environment, allowing 

the user to develop applications without having any knowledge of the inside architecture. On the 

other hand, the power consumption and the size of these chips are often prohibitive, especially for 
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embedded applications. A review of the RISC architectures available today capable of 

performing image processing tasks can be found in [14]. 

3.2.4 FIELD PROGRAMMABLE GATE ARRAYS (FPGAS) 

FPGAs are now competitive to ASICs both, in terms of capacity (i.e., number of equivalent gates 

contained in one chip) and performance. This allows to quickly having prototype of the circuit 

that has to be designed and able to operate in real conditions. The main advantage compared to 

ASICs is that FPGAs can be reprogrammed. Complex FPGAs allow to design reconfigurable 

systems that can efficiently implement real-time image processing algorithms. FPGA-based PCI 

boards are an attractive alternative to DSP systems. Recent FPGAs include processor core such as 

the ARM or PowerPC cores with RAM and peripherals. This feature allows the designer to 

develop a 1-chip reconfigurable hardware-software solution and highly facilitates redesign and 

testability of large circuitry with the same components. Thus, the FPGA chip can be reused in 

case of changes in the specifications or simply when errors have been introduced in the design 

process.  

3.2.5 NEURAL, FUZZY, AND NEURO-FUZZY HARDWARE SYSTEMS 

There exist also platforms that are capable of implementing fuzzy, neural, or hybrid systems. 

Most of them are based on general-purpose micro-controllers, which are fast enough to execute 

assembly programs that describe fuzzy or neural systems. On the other hand, there are dedicated 

processors, such as the SGS-Thomson WARP family of fuzzy controllers, for the acceleration of 

fuzzy-oriented applications. In between the two methodologies, there exist processors, such as the 

Motorola 68HC12, which offers a 4 instruction set of fuzzy operations, in addition to its general-

purpose architecture. All of the presented systems are supported by software packages, which 

enable either the high-level or the low-level description of fuzzy or neural systems and the 

generation of speed-optimized code for each platform. Table 7 summarizes the characteristics of 

fuzzy-oriented hardware products. 
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Board Processing Chip Clock Speed Description Software Support 
CNAPS server CNAPS 20MHz NN, Kohonen, BP, other BrainMaker, 

CNAPS-C, BuildNet, 
CodeNet 

NeuroChip PCI SAND 50MHz NN, feedforward, RBF, 
Kohonen, other 

NeuroLution 

Siemens SYNAPSE MA-16 50MHz NN, MLP, RBF, 
Kohonen, other 

SYNAPSE S/W 

IBM ZISC ZISC036 16MHz NN, on-chip learning, 
RBF, Kohonen, other 

S/W Development 
Tools 

RC Module 
NeuroMatrix 

8-bit NM6403 50MHz NN, forward 
propagation, Sobel 
transform, other 

C++ compiler, 
assembler, debugger 

Nestor Ni1000 Ni1000 - NN, on-chip learning, 
variety of topologies 

NestorACCESS 

AAC NNP NNP - NN, on-chip learning, 
variety of topologies 

NNP S/W 

Intel 8XC196Kx 8, 16bit MCS 96 0-20MHz FS, General Purpose, 
Fast on-chip peripherals 

Any C code 
generating S/W 
(FuzzyTECH, 

TilShell, FCM) 
Motorola 68HC12 
MCU 

16 bit 68HC12 8MHz FS, General Purpose, 4 
fuzzy instructions 
implemented 

FuzzyTECH, FCM 
(HC-11ver.) 

SGS-Thomson 
WARP 

8 bit WARP 1.1, 2.0 40MHz FS,Fuzzy dedicated 
Processor 

FuzzyStudio v3.0 

FDG EZ-LAB 16bit ADSP 21xx 33MHz FS,General Purpose FID 
Rigel R-535J 8 bit 80C5x5 12 MHz FS,General Purpose FLASH 
National 
NeuFuz/COP8 

8-bit COP8 10 MHz NFS,General Purpose NeuFuz 4 

Philips L-Neuro 16-bit L-Neuro 1.0, 
2.0, 2.3 

60 MHz NFS, Neuro-Fuzzy 
Processor 

Several 

Table 7: Fuzzy-oriented hardware systems. 
 

4. FUTURE DIRECTIONS 
The major trade-off in industrial vision is that, for a vision system to be viable, it should satisfy 

increasingly demanding performance criteria against budget constraints on behalf of the end user 

[78]. There are three technological trends that enable the alleviation of this gap: (a) Rapid 

development in semiconductor technology along with development of multipurpose mainstream 

Operating Systems, (b) Improvements in Human-Computer Interfaces, and (c) Advances in solid 

state imaging sensors.  

4.1 SOFTWARE AND HARDWARE TECHNOLOGY 

The trend to fast and cheap multipurpose solutions (software or hardware) in image processing 

[79] is especially important to the industrial environment, because there is an increasing demand 

for cost-effective and high quality products that can only be fulfilled only by very sensitive, 

automated quality monitoring. Moreover, the industry is a volatile and competitive environment, 
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thus industrial applications must be flexible enough to adjust to new production methods. These 

requirements call for multipurpose hardware and mainstream Operating Systems (OS), so that 

fast image processing can be achieved with moderate cost. The industrial OS standard in 

contemporary vision systems is UNIX, since it is the most popular platform for image processing. 

However, Windows NT seems to be a challenge, while a wide range of inexpensive statistical-

analysis and standard image manipulation applications is available for this platform. A problem 

that arises in heavy-duty real-time applications is that a single system can’t handle the data 

streams of several hundred Mbytes per second. Systems integrators have addressed the challenges 

of constantly accelerating process speeds, increasing optical solutions, and more complex 

classification criteria in the industrial area with specialized hardware, frame grabbers, DSPs, or 

even arrays of RISC systems working in parallel.  

Referring to semiconductor technology, the advances in the field have allowed for the 

integration of image processing and feature extraction algorithms onto silicon. More specifically, 

they enable hardware implementation of algorithms that are essential to industrial vision (e.g. 

contour extraction, color inspection, morphology, etc.), but are time consuming if implemented 

on software run from a host computer. The trends of this integration are in the form of either an 

ASIC system running as a specialized processor and supervised by the host, or a co-processor 

embedded in the architecture of the host (e.g. the MMX technology imported in PC-compatible 

systems). It is clear that the latter is the optimum solution in terms of cost for most applications, 

except some demanding real-time cases where a network of ASIC-boards is used to cope with 

processing demands [7, 25]. 

4.2 HUMAN-COMPUTER INTERFACES 

Another major demand of state-of-the-art systems in industrial inspection is fast prototyping, 

which requires adjusting an established inspection system to variations in the manufacturing 

process with the lowest cost and the minimum time possible. This calls for flexible and 

comprehensive image processing libraries that include special modules for all aspects of 

industrial inspection, along with multipurpose hardware. This is the reason that model-based 

solutions have not been adopted widely by the industry, since they require the development of a 

model for the images to be processed, which is either very complex or very tedious, especially for 

applications concerning the inspection of highly irregularly-shaped objects (e.g., plastic parts 

industry). A solution to this problem to a certain extend, has been given by the use of CAD-based 

vision systems [21]. 
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Interfacing the industrial vision system with the human operator is very important for the 

end user. This interface should enable any operator to efficiently adjust the parameters of the 

system and handle some low-level problems occurring during inspection, without having to call 

the software supplier. Windows-style tools (such as the ones described in Section 3) for PC-based 

applications are the common case for contemporary systems. Along with the simplification of 

software interfaces, the use of hardware interfaces especially for on-line intervention, such as the 

mouse or the light pen, have also contributed to the acceptance of machine vision in the industrial 

field [80]. 

4.3 IMAGE SENSORS 

The third technological trend that boosts the performance of industrial vision systems is the 

advances in imaging sensors. Solid-state technology has allowed the elimination of thermionic 

technology from the capturing of images, which was inappropriate for such applications due to 

slow frame rates, increased device volume, increased noise [81] etc. The introduction of solid-

state technology in image capturing has led to some breakthroughs in industrial vision, since they 

offer a number of advantages as opposed to the predecessor technology. Some of these 

advantages are smaller device sizes, robustness against EM noise, higher resolutions, 

asynchronous triggering (capturing the image the time it is needed), stop-motion techniques 

(capturing fast-moving objects) [81], on-chip signal processing [82-84], robustness against 

changes of lighting conditions [85, 86] etc. The most important technologies used in integrated 

imaging sensors are the Charge-Coupled Device (CCD), Charge-Injection Device (CID) and 

Complementary MOS (CMOS) [87]. 

Table 8 summarizes the most important characteristics of the three families of sensors. 

We have chosen typical devices at the 300K pixel resolution level, since in practice the majority 

of industrial vision systems perform image capturing at this level of resolution [27, 37, 47]. 

Notice at this point that there is a trade-off between speed and resolution, since higher resolution 

supplies the image processing system with larger image-data streams, thus image processing 

algorithms are slowed down. A popular solution to this trade-off is the use of high resolution 

when detailed analysis is required and objects under inspection remain stationary [28] or a 

network of processing boards is available [7], as opposed to the use of low resolution or 

consideration of only small Regions of Interest (ROIs) when detail is not important [9, 44, 47] or 

the inspection controls high speed actions [26]. 
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Technology@ 
Model 

CCD@ 
DALSA CA-D8-0512W1 

CID@ 
CIDTEC RACID810/8112 

CMOS@ 
VLSI Vision VV55003 

Resolution 
(Array Size) 

512x512 512x512 648x484 

ROI* Processing 
Capability 

No Yes Yes 

On-Chip Processing No Yes Yes 
Consumption 6.750W 11/22mW < 125mW 
Pixel Size 10µm 20µm 7.5µm 
Dynamic Range&  54dB 57.5dB 57dB 
Data Bits 8 8 10 
Data Rate 25MHz 10-20MHz 20-30MHz 
Full Frame Rate 77fps+ (max) 30-70fps+ 30fps+ 

 
Table 8: Typical characteristics of the three solid-state imaging sensor families. 

(*ROI: Region of Interest, &Dynamic Range=20log(ratio), +fps: frames per second, 1: reference 
[88], 2: reference [89], 3: reference [90]) 
 

The future trends of imaging sensor technology are very prosperous. Image resolution can 

reach 16Mpixels (4096x4096) for area scan devices and can serve the most demanding 

applications [81]. Frame rates can be as high as desired and can reach up to 60Kfps with the 

capabilities of region-of-interest (ROI) processing on behalf of CID and CMOS cameras. Such 

high speeds are of course possible only for the acquisition of ROI windows of very small extent, 

or for quite low resolution frames. Data bit resolution is increasing and the technology moves 

from the 8-bit era to the 16-bit era. Color cameras are also advancing their capabilities mostly 

using CCD sensor technology. Commercially available cameras use single CCD sensor of size 

¼’’, 1/3’’, or even ½’’ chip for standard PAL/NTSC video quality. Digital cameras are also 

becoming available at affordable prices, using 3 CCD chips for 24 bit true color acquisition 

separating the image into Red, Green and Blue channels. Using advanced CCD imager with 680K 

pixel capacity, they achieve high DV picture quality. Digital color cameras capture still images in 

standard JPEG format, whereas interconnection, communication and video transmission is often 

performed through the IEEE 1394 interface, also known as FireWire, which tends to become a 

standard. The integration of IEEE 1394 interface into the computer’s operating system is 

achieved via available device drivers. Camera systems achieving 640x480 frame acquisition with 

24bit true color are becoming of widespread use, while megapixel cameras are gaining their share 

in today’s market. 

Several criteria are used to evaluate image sensors, the most important being the 

following [91-93]: a) Responsivity, which is a measure of signal level per unit of optical energy. 

CMOS sensors are slightly better than CCD in this category, due to the fact that gain elements are 

easier to place on their chip. b) Dynamic Range defined as the ratio of a pixel’s saturation level to 

 31



its signal threshold. CCD sensors are better because they have less on-chip circuitry, which 

reduces the noise and increases the sensitivity of the sensor. c) Uniformity, indicating the 

consistency of response for different pixels under identical illumination conditions. Circuitry 

variations affect the uniformity of pixels on an image sensor. CMOS sensors are more sensitive to 

these variations because of the more additional circuitry on sensor. Newer CMOS devices have 

added feedback to the amplifiers to compensate these variations, but this only works well under 

illuminated conditions. CCD has better uniformity because the lack of any amplification in the 

sensor itself. d) Speed of operation, with CMOS sensors operating faster because most of the 

circuitry is on board. Thus, the signals communicate less distance and don’t have to be piped to 

other chips on the printed circuit board. CCD imagers still operate adequately fast for most 

applications, but anticipated demanding applications will consider CMOS sensors instead. e) 

Reliability, in which respect CMOS sensors are superior to CCDs because of the high level of 

integration contained on the chip. More integration means less external connections that are 

susceptible to corrosion and other problems associated with solder joints in harsh environments. 

Overall, CCDs offer superior image performance and flexibility at the expense of system size. 

CMOS imagers offer more integration, lower power dissipation, and smaller system size at the 

expense of image quality and flexibility. For next-generation applications, CMOS evolves in 

order to get around the low–quality problem. Improvements are incorporated by the use of 

microlenses, which are small lenses manufactured directly above the pixel to focus the light 

towards the active portion, and the minimization of the space circuitry in the CMOS pixel. 

On-chip A/D conversion and signal processing have been enabled from the advances in 

semiconductor technology, thus eliminating the need for separated chips. The trend is to move 

from the imaging sensor to the image processing sensor, with on-chip capabilities for image 

processing algorithms such as low-pass filtering [94], velocity measuring [83], edge detection, 

smoothing [73] etc. Although CCD is a mature technology that is commonly used in industrial 

vision applications, the potential of the alternative technologies (CID and CMOS) is very high, 

considering their on-chip intelligent and autonomous post-processing. 

Many applications in industrial vision require stand-alone operation, which means that 

there is a need for intelligent cameras providing fast processing capabilities inside the camera. 

The major challenge in this direction is to maintain an easy-to-program feature by providing the 

end-user with commercial image processing libraries. The integration of a general-purpose 

processor or a DSP inside the camera offers such features, since compiling tools are widely 

available for these kinds of architectures. Unfortunately, even when using instruction-level 
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parallelism like in VLIW processors, the performance achieved is often not sufficient to handle 

the amount of data generated by high resolution and dynamic-range cameras. One 

complementary approach is to add a coprocessor exploiting data-level parallelism, i.e. capable of 

performing the same operation on several different data. The combination of the two approaches 

(i.e. intelligent camera and coprocessor) should result in very powerful systems able to offer 

flexible programming facilities together with increased performance for most of the algorithms 

included in image processing libraries. 

5 CONCLUSIONS 
The state of the art in machine vision inspection research and technology is presented. The 

cardinal factors affecting the development of automated inspection systems are discussed and 

related to the literature in the field. Contemporary applications of machine vision in the industry 

are also reviewed and classified according to (a) Their measured parameters (i.e., dimensions, 

surface, assembly and operation) and (b) The system’s “Degrees of Freedom”. Tools and 

techniques either dedicated to specific application requirements or targeted towards a wider 

variety of applications with similar requirements are presented. This review covers a wide range 

of software and hardware products including integrated image processing software packages, 

image processing libraries, neural network, fuzzy, neuro-fuzzy tools, genetic algorithms as well 

as hardware tools. The paper concludes with a critical perspective and a summary of future 

directions in the field, as they are determined by the increasing performance criteria imposed to 

the industrial vision technology and the restricted end-user budget. Trends on technological fields 

affecting industrial vision, including semiconductor technology, human-computer interfacing and 

imaging sensors, are also emphasized. 
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