
An IDA∗ Algorithm for Optimal Spare Allocation

Michail G. Lagoudakis∗

Center for Advanced Computer Studies

University of Southwestern Louisiana

Lafayette, LA 70504

Optimal Spare Allocation, IDA∗ search, TreadMarksTM.

Abstract

A new algorithm for the Optimal Spare Allocation problem
in reconfigurable arrays is presented. It is based on a previ-
ously published branch and bound search method [4]. En-
hanced with a strong heuristic function, it yields an effective
A∗ search, which performs more efficiently in the iterative
deepening implementation (IDA∗). A parallel implementa-
tion of the algorithm for a distributed shared memory ma-
chine using TreadMarksTM was used for evaluation. The
results demonstrate the efficiency of the scheme and show
how computationally intensive problems can be handled by
appropriate domain heuristics and cooperative distributed
computational power.

1 The Optimal Spare Allocation Problem

The Optimal Spare Allocation (OSA) problem (or equiva-
lently Vertex Cover in Bipartite Graphs) [4] is an NP-HARD
problem arising in fault tolerant computing. It deals with
the optimal allocation of spare rows and columns over a
two-dimensional array of cells where some cells are faulty.
The cells can be processors, memory units or VLSI compo-
nents in practical applications. A number of spare rows and
a number of spare columns are given, with two costs asso-
ciated to spare rows and columns respectively. One spare
row (column) can replace any row (column) in the array,
repairing all the faulty cells along this row (column). The
purpose is to repair all the faulty cells using spares, with the
minimum possible overall cost.

The sample instance [4] given below, consists of a (10×10)
array with 12 faulty cells. There are 3 spare rows with a cost
of 8 associated to each one of them and 3 spare columns with
a cost of 15 associated to each one of them. An optimal solu-
tion with a cost of 39 would include the spare row allocations
{4, 2, 8} and the spare column allocation {9}.

∗Currently with the Department of Computer Science, Duke Uni-
versity, Durham, NC 27708; Email: mgl@cs.duke.edu.

1 2 3 4 5 6 7 8 9 10

1
2 X X X
3
4 X X X X X
5
6
7
8 X X X
9
10 X

2 Previous Work

Kuo and Fuchs [4] proposed an algorithm for the OSA prob-
lem with three steps: (1) Must-Repair Analysis, (2) Early-
Abort Analysis, and (3) Final Analysis.

The Must-Repair Analysis repairs rows and columns for
which there is no other choice. A must-repair row is a row,
where the number of faulty cells is greater than the number
of available spare columns. A must-repair column is a col-
umn, where the number of faulty cells is greater than the
number of available spare rows. Clearly, the faulty cells in
a must-repair row (column) can be repaired only by a spare
row (column). This eliminates many faulty cells and may
cause an early abort in the absence of the required spares.

The Early-Abort Analysis calculates a lower bound to
the number of spares required to repair the remaining faulty
cells, using a polynomial graph-theoretic algorithm for max-
imum matching. It aborts if the array cannot be repaired.

The Final Analysis is a branch and bound search in the
space of partial solutions. Each node records the spare row
and column assignments and the (so far) cost for the partial
solution it represents. A node is expanded by selecting an
uncovered faulty cell and covering it by either a spare row or
a spare column, creating at most two children nodes. The
algorithm selects always the node with the minimum cost
for expansion (uniform cost search) to ensure optimality.

The basic limitations of this algorithm are summarized
in the following: (1) The must-repair analysis is performed
only once, although it could eliminate dead-end branches of
the tree if applied at each node. (2) The early-abort analysis
could be used at each node as a heuristic for informed search.
However, it does not take into account the costs of the spares
and thus it is not the best possible. (3) The final analysis
is uninformed and, since pruning is not applied, it will lead
very soon to exponential explosion. Moreover, due to their
implementation, a solution path cannot have a length less
than the total number of faulty cells remaining after the
must-repair analysis.



3 The Algorithm

The new algorithm attempts to overcome the limitations
above. Its heart is a heuristic cost function that gives an
(optimistic) estimate of the cost from a node (partial solu-
tion) n to the complete solution. This estimate added to
the so far cost of n gives an estimate of the total cost to the
solution through n. This estimated cost is used for guidance
of the search and pruning of the tree.

The heuristic function requires the following data with
respect to the node under consideration:
CFR (Current Faulty Rows) : The number of rows that con-
tain faulty cells.
CFC (Current Faulty Columns) : The number of columns
that contain faulty cells.
FCRDi (Faulty Cell Row Distribution) : The number of
faulty cells in a faulty row, for i = 1,...,CFR. The values
are sorted in descending order.
FCRCi (Faulty Cell Row Coverage) : The number of faulty
cells that can be covered in the best case given i spare rows,

for i = 1,...,CFR. Obviously, FCRCi =
∑i

k=1
FCRDk.

FCCDj (Faulty Cell Column Distribution) : Similar to
FCRDi, but for the columns.
FCCCj (Faulty Cell Column Coverage) : Similar to FCRCi,
but for the columns.
TFR (Totally Faulty Rows) : The number of faulty rows
that have a number of faulty cells equal to the total number
of faulty columns.
TFC (Totally Faulty Columns) : Similar to TFR, but for
the columns.
CTFC (Current Total Faulty Cells) : The total number of
the uncovered faulty cells.
SR (Spare Rows) : The number of available spare rows.
SC (Spare Columns) : The number of available spare columns.
SRC (Spare Row Cost) : The cost of a spare row.
SCC (Spare Column Cost) : The cost of a spare column.

The idea runs as follows: we iterate over all possible
combinations of x spare rows and y spare columns that could
cover all the uncovered cells in the best case. For each pair
the cost is calculated and the minimum is returned (to avoid
overestimation).
The first loop iterates over x and the second over y up to the
values maxx = min(CFR, SR) and maxy = min(CFC, SC).

The extreme cases (x=0 or CFR, y=0 or CFC) are
straightforward. In all other cases, the corresponding y’s
and x’s are calculated using

arg min
y

(

y
∑

k=1

covx(k) ≥ remx

)

, arg min
x

(

y
∑

k=1

covy(k) ≥ remy

)

(1)

covx(k) = min(CFR − x, FCCDk − min(TFR, x)) (2)

covy(k) = min(CFC − y, FCRDk − min(TFC, y)) (3)

remx = CTFC − FCRCx, remy = CTFC − FCCCy (4)

The remaining uncovered cells for x selected spare rows (or
y spare columns) are given by eq. 4, whereas eq. 2 (or 3)
delineates how they would be covered in the best case as
spare columns (rows) are added. Finally, the minimum y
(or x) that satisfies the inequality in eq. 1 is returned to
form the pair (x,y), whose validity is subject to

0 ≤ x ≤ SR and 0 ≤ y ≤ SC (5)

and its cost is

cost[(x, y)] = SRC × x + SCC × y. (6)

Heuristic Function H

if (CTFC = 0) then return 0
Set ESTIMATE ←∞
for x←0 to maxx do

if (x = 0) then y ←CFC
elseif (x = CFR) then y ←0
else calculate y using eqs. 1, 2, 4
if ((x, y) is a valid configuration (eq. 5) and

(cost[(x, y)] < ESTIMATE))
then ESTIMATE ←cost[(x, y)]

for y ←0 to maxy do

if (y = 0) then x ←CFR
elseif (y = CFR) then x ←0
else calculate x using eqs. 1, 3, 4
if ((x, y) is a valid configuration (eq. 5) and

(cost[(x, y)] < ESTIMATE))
then ESTIMATE ←cost[(x, y)]

return ESTIMATE

Other heuristics used are the following: (1) If a partial-
solution node has no spares available, it is pruned. (2) If the
estimated cost of a node is greater than what the available
spares of the node can afford, it is pruned. (3) If the node
contains must-repair rows (columns) that cannot be repaired
it is pruned. (4) The node with the minimum cost has the
highest priority for expansion. Among nodes with the same
cost, the node with the fewest uncovered faulty cells has the
highest priority. (5) The next cell to be covered when a node
is expanded is the one that resides on the row and column
that aggregately have the maximum number of faulty cells.
This reduces the size of the tree from the very early steps.

With all the heuristics above, our algorithm is an in-
formed search procedure along the lines of A∗ search [6].
However, the large number of nodes that must be kept or-
dered in the memory causes early memory overflows and
adds significant overhead for sorting, as the problem in-
stances grow. An iterative deepening implementation IDA∗

([3],[6]) overcomes these limitations with the cost of repeat-
ing expansions. Nevertheless, its overall performance is much
better and seems to be more suitable for the OSA problem.

R
C
Co UC

R
C
Co UC

R
C
Co UC

12

39 2

4
9 9

42
7

254

1

2 3

4

(2, 7)

R
C
Co UC39

4
9

2 R
C
Co UC

4
9

28

0
4

54 1
5

(8, 4)

39

Solution

Cell covered
at this level

Cell covered
at this level

Root

The resulting search tree for the sample instance is given
above (R/C=Row/Column Allocations, Co=Cost, UC=Un-
covered Cells). For this instance, Kuo-Fuchs algorithm cre-
ates 11 nodes, whereas a previous algorithm by Day [2] cre-
ates 18. Our approach is done with 5 nodes, which is a
significant improvement.



Problem Number of Array Number of Number of Cost of Cost of

Instance Faulty Cells Dimension Spare Rows Spare Columns Spare Row Spare Column

1 100 100 × 100 50 50 3 3
2 110 100 × 100 55 55 3 3
3 600 4000 × 4000 300 300 3 3
4 600 4000 × 3000 400 200 4 2
5 800 1024 × 4096 200 600 20 10

Problem Optimal 1 2 4 8

Instance Cost Processor Processors Processors Processors

Time 7 min 54 sec 4 min 10 sec 2 min 16 sec 1 min 33 sec
1 168 Speedup 1 1.90 3.49 5.10

Expansion 456,258 456,964 454,548 451,997
Time 54 min 54 sec 27 min 24 sec 14 min 33 sec 8 min 14 sec

2 177 Speedup 1 2.00 3.77 6.67
Expansion 2,831,874 2,850,157 2,887,076 2,959,850
Time 23 min 9 sec 13 min 4 sec 7 min 16 sec 4 min 41 sec

3 1590 Speedup 1 1.77 3.19 4.94
Expansion 14,283 14,624 15,014 16,040
Time 2 h 3 min 1 h 2 min 30 min 56 sec 16 min 21 sec

4 1628 Speedup 1 1.98 3.98 7.54
Expansion 76,478 77,843 76,321 76,393
Time 2 min 28 sec 1 min 54 sec 1 min 50 sec 1 min 38 sec

5 7260 Speedup 1 1.30 1.35 1.51
Expansion 1,540 2,290 2,549 4,284

4 Results

The algorithm was implemented as parallel IDA∗ search [5]
on a network of workstations using TreadMarksTM, a tool
that provides shared memory abstraction and synchroniza-
tion mechanisms for distributed parallel computing. In our
case, search proceeds in parallel along different paths within
the same search contour. All processors are synchronized be-
tween contours to determine the next cost limit and ensure
optimality. Work balance was achieved by a shared queue
of nodes, whereby processors deposit nodes (if the queue is
empty) or withdraw nodes (if they run out of work). Each
processor performs IDA∗ locally, periodically checking the
shared queue and also whether a solution has been found.

The performance of the scheme was tested on several
instances of the OSA problem. A complication is due to
the large number of independent variables in the problem,
leading to a plethora of different choices. Basically, the vari-
able that dominates the complexity is the number of faulty
cells (the total number of search nodes is exponential to this
number), as well as their distribution in the array.

The tables above summarize the results. The top table
shows the sample instances tested and the bottom table the
different execution times, speedup and expanded nodes for
1, 2, 4 and 8 processors (workstations). All experiments
were conducted on eight SUN SPARCstations 4 connected
through a 10 Mbit shared ethernet under a typical machine
and network load for more realistic results1. The distribu-
tion of faulty cells was taken random (lying somewhere be-
tween totally clustered and totally independent cells) which
seems to be the most difficult case.

In the first four instances, more processors imply shorter
execution time, but the amount of speedup differs. Notice
that best speedup was gained for the hardest instances (2
and 4). The first two instances demonstrate how the number
of faulty cells affects the execution time (actually, the size of
the search tree). The next two demonstrate how the dimen-
sion of the array affects the execution time. By “shrinking”

1During the experiments the workstations were being used also by
other users running a variety of applications (word processors, web
browsers, etc.).

the array, clustering phenomena, that can “fool” easily the
heuristic function, are more possible. The last instance is
an “easy” case. The heuristic function returned an estimate
very close to the actual cost and the solution was found
early (in the 7th search contour), where parallel search had
not been stabilized yet.

5 Conclusion

From the experience gained, we conclude that many prob-
lems proven to be hard, can be confronted (at least for
instances of practical importance) by algorithms that uti-
lize appropriate domain heuristics. Moreover, by employing
parallelism significant speedup can be gained, and thus so-
lutions to harder instances. The difference between a few
minutes and some hours is analogous to the difference be-
tween solving or not the problem in practice.

I would like to thank Prof. N.F. Tzeng, Prof. A. Maida
and A. Kongmunvattana for their help, and the Lilian-Bou-
douri Foundation in Greece for financial support.

References

[1] Amza, C., Cox, A., Dwarkadas, S., Keleher, P., Lu, H., Raja-
mony, R. and Zwaenepoel, W. “TreadMarksTM: Shared Mem-
ory Computing on Networks of Workstations,” IEEE Com-
puter, 29, 2, February 1996, pp. 18–28.

[2] Day, J. “A Fault-Driven Comprehensive Redundancy Algo-
rithm,” IEEE Design & Test, 2, 3, June 1985, pp. 35–44.

[3] Korf, R. “Depth-first Iterative Deepening: An Optimal Ad-
missible Tree Search,” Artificial Intelligence, 27, 1985, pp. 97–
109.

[4] Kuo, S. and Fuchs K. “Efficient Spare Allocation for Recon-
figurable Arrays,” IEEE Design & Test, 4, February 1987, pp.
24–31.

[5] Lagoudakis, M., in preparation, draft available at
http://www.cs.duke.edu/~ mgl/parallel.ps.gz.

[6] Russell, S. and Norvig, P. Artificial Intelligence: A Modern
Approach, Prentice Hall, 1995, ch. 4.


