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Neural maps have been recently proposed as an alter-
native method for mobile robot path planning (Glasius,
Komoda, and Gielen 1995). However, these proposals
are mostly theoretical and are primarily concerned with
biological plausibility. Our purpose is to investigate
their applicability on real robots.
Information about the environment is mapped on a

topologically ordered neural population. The di�usion
dynamics force the network into a unique equilibrium
state that de�nes the navigation landscape for the given
target. A path from any initial position to the target
(corresponding to the peak of the activation surface)
is derived by a steepest ascent procedure. The �gures
below show an example on a 50� 50 rectangular map
(a. Environment, b. Contours of activation, c. Path).

We attempted to implement the approach on a No-
mad 200 mobile robot for sonar-based navigation. How-
ever, we found that the neural map requires reorgani-
zation in a polar topology that reects the distribution
of the sonar data points, the only source of information
about the environment. The polar map covers the local
circular area around at the robot. Sonar data points are
mapped scaled to the physical robot size. At each step
of the control loop, the dynamics of the map is used
to derive the angular and radial displacement required
to reach the target from the current con�guration. A
simpli�ed example is shown below (bird's eye view).
Sensor uncertainty and noise is handled by a sonar
short-term memory and appropriate coordinate map-
ping for reuse. Motion control is based on an optimiza-
tion procedure that combines ideas from Fox, Burgard,
and Thrun (1997) and Hong et al (1996), and takes into
account the kinematic and dynamic constraints of the
robot. The complete architecture of the resulting local
(sensor-based) navigation system is shown below.
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The system was tested in both simulated and real
world (o�ce) environments (see �gure). It was able
to successfully navigate avoiding static and dynamic
obstacles. Complete description of the system as well as
information on how it can be used for global navigation
can be found in (Lagoudakis 1998).
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