
Learning to Select Branching Rules

in the DPLL Procedure for Satisfiability

Michail G. Lagoudakis

Department of Computer Science, Duke University, Durham, NC 27708, USA

Michael L. Littman

Shannon Laboratory, AT&T Labs Research, Florham Park, NJ 07932, USA

Abstract

The DPLL procedure is the most popular complete satisfiability (SAT) solver. While
its worst case complexity is exponential, the actual running time is greatly affected
by the ordering of branch variables during the search. Several branching rules have
been proposed, but none is the best in all cases. This work investigates the use
of automated methods for choosing the most appropriate branching rule at each
node in the search tree. We consider a reinforcement-learning approach where a
value function, which predicts the performance of each branching rule in each case,
is learned through trial runs on a typical problem set of the target class of SAT
problems. Our results indicate that, provided sufficient training on a given class,
the resulting strategy performs as well as (and, in some cases, better than) the best
branching rule for that class.

Key words: Satisfiability, Branching Rules, Reinforcement Learning, Algorithm
Selection, Value Function Approximation

1 Introduction

Repetitive tasks, such as adding numbers, counting votes, or solving instances
of a specific problem are common for both people and computers. It is true that
nowadays most such tasks are performed by machines that, unlike humans,
do not get tired of doing the same thing over and over again. However, unlike

Email addresses: mgl@cs.duke.edu (Michail G. Lagoudakis),
mlittman@research.att.com (Michael L. Littman).

Preprint submitted to Elsevier Science 23 May 2001

machines, people tend to improve their performance on a repetitive task as
they accumulate more and more experience with the task. A computer is,
in general, doomed to taking the very same steps in solving a problem no
matter whether it is its first or millionth time. The human quality of learning,
if embedded in a machine, would have a significant impact on the way we
program, think of, and use computers.

Our work proposes to combine human knowledge with machine power: the
human programmers provide a set of different algorithms for a given problem
and the machine undertakes the task of learning over time how to combine the
algorithms to improve its performance. Our earlier work on algorithm selec-
tion (Lagoudakis and Littman, 2000) attacked recursive algorithms for sorting
and order-statistic selection. This paper extends our approach to backtrack-
ing algorithms for satisfiability (SAT), and discusses our initial experimental
efforts. Solving computationally demanding problems, such as SAT, is an area
in which learning to do algorithm selection can have a significant impact. Not
only do numerous algorithms exist for special cases of such problems, but even
a modest speedup in solving such problems is highly desirable.

Section 2 provides an overview of the SAT problem and its counting variation
and outlines the basic algorithm for solving them. The set of branching rules
that we considered is described in Section 3 and the learning algorithm is
covered in Section 4. Experimental results are included in Section 5, while
Section 6 discusses the difficulties we faced along the way and future plans of
this work.

2 SAT, #SAT, and DPLL

A Boolean formula in conjunctive normal form (CNF) consists of n Boolean
variables x1, x2, ..., xn and m clauses C1, C2, ..., Cm. Each variable can take a
TRUE or FALSE value. The value of the complement x̄i of some variable xi
is the opposite of xi. Each clause is a disjunction of distinct literals, where a
literal is a single variable xi itself or its complement x̄i. A clause is satisfied
iff at least one of its literals takes a TRUE value. An empty clause is by
definition unsatisfiable. A Boolean formula F is a conjunction of (nonempty)
clauses, and it is satisfiable if there is an assignment to the variables that
satisfies all the clauses. An empty formula is by definition satisfiable. SAT
refers to the problem of finding a satisfying assignment for a given formula. If
no such assignment exists, the formula is unsatisfiable.

The example SAT formula below consists of 5 variables and 8 clauses. It is

2

satisfiable and (x1, x2, x3, x4, x5) = (1, 1, 0, 1, 0) is a satisfying assignment:

(x1 + x2 + x̄3)(x̄2 + x4)(x̄1 + x̄5)(x̄1 + x2 + x3 + x̄4 + x5)(x̄3)(x2 + x5)(x̄5)(x1).

The number of assignments that satisfy a Boolean formula can be anywhere
between 0 (unsatisfiable) and 2n (tautology—satisfied by all assignments),
where n is the number of variables in the formula. #SAT refers to the problem
of finding the number of satisfying assignments for a given formula.

Both SAT and #SAT are hard problems. SAT is NP-HARD and indeed it is
the first problem known to be NP-COMPLETE. In general, #SAT represents
a harder problem compared to SAT in the sense that any algorithm that solves
#SAT (exact number of satisfying assignments) can be used to solve SAT (is
there at least one satisfying assignment?). It is #P-complete.

The problem of counting satisfying assignments is of interest in artificial intelli-
gence because it is equivalent to problems in network reliability (Valiant, 1979)
and belief network inference (Roth, 1996). An algorithm for #SAT has been
used to solve probabilistic planning problems at state-of-the-art speeds (Ma-
jercik and Littman, 1998).

The Davis-Putnam-Logemann-Loveland (DPLL) procedure (Davis et al., 1962)
is a search method for solving SAT problems. DPLL explores the space of par-
tial assignments in a systematic way that eliminates the ones that lead to a
contradiction, and extends incrementally the promising ones. A partial assign-
ment can be extended by selecting an unassigned variable and trying in turn
the two possible assignments (TRUE, FALSE) to that variable (branching),
thus creating two new partial assignments. A reduced formula is created in
each case; a TRUE assignment to xi eliminates all clauses that contain the
literal xi (these clauses are satisfied) and all appearances of x̄i from the re-
maining clauses. A FALSE assignment has the symmetric effect. The same
procedure is then applied recursively to each reduced formula.

Two key operations of the DPLL procedure are the unit propagation and the
purification steps. Unit propagation extends a partial assignment in the pres-
ence of unit clauses (clauses with a single literal). Such clauses can only be
satisfied by a specific assignment to the corresponding variable. The comple-
mentary assignment would lead to a contradiction and therefore can be safely
ignored. The elimination of a variable can create new unit clauses, and thus
unit propagation eliminates variables by repeated passes until there is no unit
clause in the formula. Purification applies when a variable xi appears in the
formula purely in positive (xi) or negative (x̄i) form. Such variables can be
safely eliminated by assigning TRUE in the positive case and FALSE in the
negative one. Purification is applied repeatedly as pure variables might be
created after each purification pass.

3

The DPLL procedure is given in a more algorithmic format below. Notice that
purification and branching are implemented by triggering the appropriate unit
propagations.

DPLL(F)
if (F contains an empty clause)
return “unsatisfiable”

if (F is empty)
output current assignment
return “satisfiable”

/* Unit Propagation */
if (F contains a unit clause {l})
Create F ′ from F by eliminating all clauses that

contain l and all appearances of l̄
return DPLL(F ′)

/* Purification */
if (F contains a pure literal l)
return DPLL(F ∪ {l})

/* Branching */
*** Select a free literal l ***
if (DPLL(F ∪ {l}) is “satisfiable”)
return “satisfiable”

else

return DPLL(F ∪ {l̄})

The DPLL procedure can be modified to solve the #SAT problem (Majercik
and Littman, 1998; Birnbaum and Lozinskii, 1999). For each partial assign-
ment that is found to be satisfying, there exist 2k possible extensions to a full
assignment, where k is the number of free variables. Thus, by exploring the
whole space of partial assignments, it is possible to enumerate all possible sat-
isfying assignments. Note that purification cannot be used in this case, since
there might be assignments where pure variables can take either value. The
modified DPLL for #SAT is given below.

#DPLL(F)
if (F contains an empty clause)
return 0

if (F is empty)
return 2k, k=number of free variables

/* Unit Propagation */
if (F contains a unit clause {l})
Create F ′ from F by eliminating all clauses that

contain l and all appearances of l̄
return #DPLL(F ′)

/* Branching */
*** Select a free literal l ***
return #DPLL(F ∪ {l}) + #DPLL(F ∪ {l̄})

4

3 Branching Rules for (#)DPLL

Although the worst-case complexity of the DPLL procedure is exponential,
the actual running time can be greatly affected by the choices of free literals
in the branching step. It is possible to reduce the size of the search tree that
DPLL and #DPLL explore by orders of magnitude if variables are chosen in
the appropriate order.

Despite the fact that finding an optimal ordering is computationally difficult,
a significant amount of research has been devoted to the invention of branch-
ing rules that pick literals in the branching step of DPLL. They work fairly
well in practice compared to a random strategy, but provide no guarantees of
optimality.

The branching rules, in general, compute some a score(l) for each free literal
l and Score(v) for each free variable v. In most cases, the scores for comple-
mentary literals are combined in some way to balance the two branches of the
search; if one path of search (say, l) is not fruitful, the other one (l̄) has to be
explored 1 . In our work, we used

Score(x) = score(x) + score(x̄).

The variable x that maximizes the score is selected. Whether to branch on x
or x̄ first is decided in favor of the literal with the maximum individual score.
This last decision affects only the DPLL procedure—#DPLL has to explore
both branches anyway, so the order does not matter.

In this paper, we make use of seven branching rules, listed below. Hooker
and Vinay (1995) and Li and Anbulagan (1997) provide extensive reviews of
branching rules.

• MAXO : This rule selects the literal with the maximum number of occur-
rences in the formula. The idea is that splitting on such a choice will have
a wide-spread effect in the formula.
• MOMS : The MOMS rule is similar to MAXO, but it counts only occur-
rences of literals in minimum size clauses. The rationale is that minimum
size clauses play a more important role during the search as they can reveal
a contradiction and/or enable unit propagations quickly.
• MAMS : This is a novel rule that scores literals by combining additively
the scores of the previous two rules. The idea is that it is desirable to satisfy
as many clauses as possible (MAXO), but also to create as many clauses of
minimum size as possible (MOMS).

1 This is particularly true for #SAT, where both branches must be explored anyway.

5

• JW : The Jeroslaw-Wang rule combines the ideas behind MAXO and
MOMS using exponential weighting: JW(l) =

∑

j, l∈Cj 2
−nj , where nj is

the number of literals in clause Cj. Smaller clauses have more weight than
the larger ones.
• UP : This rule probes the search by making a trial assignment to each
free literal and counting the number of triggered unit propagations due to
that assignment. The more unit propagations the better, since each unit
propagation eliminates one variable.
• GUP : This is a greedy version of the previous rule. During the trial as-
signments it might be discovered that some assignment to a literal leads to
contradiction or satisfaction (through the series of triggered unit propaga-
tions). If such a literal is found, it is immediately selected to branch on.
Otherwise, GUP scores literals the same way UP does.
• SUP : This is a selective version of UP. Due to the huge computational cost
of the UP rule, SUP runs first the four inexpensive rules (MAXO, MOMS,
MAMS, and JW), which suggest up to four distinct literals and then it
selects among them using the UP scoring function. Thus, the cost of trial
assignments and unit propagations is paid only for a fixed number of free
literals (the most promising ones) and not for all of them.

4 Learning to Select Branching Rules

Algorithm selection is the problem of selecting the most efficient algorithm
among equivalent ones for a given problem instance (Rice, 1976). In its orig-
inal form, algorithm selection involves only a one-shot decision—the “best”
algorithm is selected and then applied to the instance with no further decision
making. Lagoudakis and Littman (2000) extended algorithm selection to cases
that involve recursive computations. When recursive algorithms are included
in the set, every time a recursive call is made, the algorithm selection process
can be invoked to select any of the available algorithms. A key advantage of
this approach is that the combined (hybrid) algorithm that results from the
multiple decisions has the potential to perform better than any of the individ-
ual algorithms. On the other hand, the decision-making task becomes harder,
as it involves a sequence of decisions.

A natural approach to the recursive algorithm selection problem is to use the
Markov decision processes (MDP) framework and ideas from reinforcement
learning (RL). In this framework, an agent seeks an optimal policy—a function
that selects actions in each possible state of the process—with the objective of
minimizing the total expected cost. The process evolves over the state space
according to the dynamics of the system and the actions taken by the agent.
The agent is reinforced by a signal that indicates the immediate cost of each
transition.

6

For the algorithm-selection problem, the state consists of a description of
the current instance (or subinstance) under consideration in terms of some
features (e.g. size). The actions are the available algorithms for the problem.
Choosing a non-recursive algorithm results in a transition to the final state
(problem solved) and the cost for such a choice is the execution time taken for
that transition. On the contrary, choosing a recursive algorithm results in a
transition to one or more states (one for each recursive call) from where new
decisions can be made. The cost paid is the execution time taken (excluding
time taken in recursive calls). The goal is to minimize the total expected cost,
which by definition is the total execution time for the particular instance.

The mainstream approach for solving such problems is the construction (ei-
ther by computation or learning) of a value function, such as Q(s, a), which
“predicts” the expected total cost when taking action a in state s and acting
optimally thereafter. In most cases, the state space is fairly big and an explicit
(tabular) representation of the value function would be rather expensive (in
terms of both storage and computation/learning). For that reason, parametric
approximators are often used to represent the value function and the problem
becomes that of finding the set of parameters that maximizes the accuracy
of the approximator. A common class of approximators is the so called linear
architectures, where the value function is approximated as a linear weighted
combination of basis functions (features) Q(s, a) = φ(s, a)ᵀw, where w are
the weights (parameters). Linear architectures are popular as there are sev-
eral well-studied methods (e.g. Least-Squares projection) for determining the
appropriate parameters (Bradtke and Barto, 1996; Boyan, 1999).

4.1 Learning Setup for #DPLL branching rules

The branching rules in the #DPLL procedure 2 can be thought of as alter-
natives available each time the algorithm must branch. They are equivalent
in the sense that success or failure of the search does not depend on them,
but they can have a tremendous impact on the size of the search tree and
therefore on the running time of #DPLL. None of these branching rules is
best over all classes of SAT problems; their performance is dependent on the
features of the current instance and the problem distribution from which they
are drawn. Given that each branching node of #DPLL corresponds to a #SAT
subinstance, it is plausible to be able to select the “best” branching rule for
that node, based on features of that particular subinstance.

Therefore, to conform with the MDP terminology, the state of the process

2 From this point on, we focus on the #SAT problem and the associated #DPLL
procedure, as they represent the most general case and fit within our goal of mini-
mizing the entire search tree.

7

consists of features of the current #SAT (sub)instance; for example, number
of variables, number of clauses, number of literals, etc. The main requirement
on these features is that they should carry information about the performance
of the branching rules; a varying value of a feature should result in varying
performance for some (or all) of the branching rules. Further, these features
have to be easily computable to minimize overhead.

All branching rules are available as possible actions at each branching node.
No matter which branching rule is chosen, search continues in two directions (l
and l̄ branches). For each direction, a series of unit propagations is performed
before arriving at a node of the following kind:

• Branching Node : There are no unit clauses and unit propagation cannot
continue. This is a new state where a new decision has to be made.
• Contradiction Node : The current partial assignment causes a contradiction
in the formula. Search along this branch is terminated here. This is an
absorbing state of the MDP.
• Satisfaction Node : The current partial assignment satisfies the entire for-
mula. Search along this branch is terminated and the number of satisfying
assignments is computed. This is again an absorbing state of the MDP.

Therefore, taking an action in a state results in two (possibly absorbing) new
states. This one-to-two state transition violates the standard MDP definition,
but it can be thought of as cloning the MDP and creating one copy for each
transition. The two copies continue independently thereafter.

The immediate cost paid for choosing a branching rule is computed in two
different ways. The total number of search nodes that results from unit propa-
gations, between the original and the two new states, is the node cost paid for
the decision at the original node. That is the immediate cost for choosing the
branching rules MAXO, MOMS, MAMS, and JW. The other three branching
rules perform trial partial searches to determine the branching variable. The
total number of nodes created during these trial searches is added to the above
node cost for branching rules UP, GUP, and SUP. The definition of the cost
function implies that the total accumulated cost after a complete run of the
DPLL procedure will be the size of the entire search tree (in terms of nodes)
plus the total count of nodes created during the trial searches. Minimizing this
total cost is a way to minimize the total running time, which is proportional
to the total number of nodes explored.

4.2 State Representation

The state s of the process is a description of the SAT (sub)instance under
consideration, in terms of some easily computable features. Candidate features

8

include, but are not limited to, the number of variables, number of clauses,
number of literals, minimum size of clauses, number of minimum size clauses,
ratio of variables to clauses, etc. Unfortunately, the size of the state space
grows exponentially with the number of features used, and, therefore, a com-
promise has to be made as to which features are more informative and will be
part of the state. The best we can hope for is a very abstract characterization
of the instance.

A series of experiments and visualizations of gathered data were performed to
determine the relevance of each candidate feature to our problem. Different
combinations of features were tried and tests were performed on SAT instances
from different classes. These tests suggested that the only really useful feature
is the number of variables n in the formula. This is not so surprising, consid-
ering that the size of the problem instance is always a crucial factor in the
expected amount of computational resources needed to solve that instance. In
our particular case, even though the performance of a branching rule is not a
pure function of n, useful information can be gained, like the rate of increase
of cost for different sizes. What is surprising is that adding features in the
state representation did not improve, and sometimes worsened, performance.

For the rest of this paper, our state representation for a given SAT instance will
consist of the number of variables n in the instance only. Even such a simple
representation can take us a good way toward our goal. Other possibilities are
discussed at the end of the paper.

4.3 Value Function Approximation

To accomplish the goal of minimizing the search tree of the #DPLL procedure,
we seek to learn the state-action value function Q(n, a) that “predicts” the
expected total node cost when taking action a in state n and acting optimally
thereafter. In general, for any fixed action a, Q(n, a) is exponential in n. In
fact, after extensive experimentation with learning tabular representations of
Q(n, a) under a variety of problem distributions, we found that Q(n, a) can
be very well approximated by the following parametric form 3 :

Q̂(n, a) =











0 n = 0,

2p
(d)(n,w(a)) n > 0.

.

3 Note that the base 2 of the exponential is only a convenient choice. Any other
base could be used instead; the net change would be a multiplicative constant in
the coefficients w(a).

9

Here, p(d)(n,w(a)) is a polynomial in n of degree d with coefficients w(a) and
no constant term:

p(d)(n,w(a)) =
d
∑

i=1

w
(a)
i n

i

This approximation is certainly nonlinear, but by taking the logarithm it can
be approximated by a linear architecture (for n > 0)

log2 Q̂(n, a) = p
(d)(n,w(a)) =

d
∑

i=1

w
(a)
i φi(n),

where the basis functions are φi(n) = n
i. Given this approximation, the goal is

to find/learn the best set of parameters w(a) that will make the approximation
more accurate.

4.4 Learning Algorithm

Our learning algorithm is a combination of Temporal Difference learning and
Least-Squares. For each action a, a d × d matrix A(a) and a vector b(a) are
maintained, where d is the number of basis functions used. The parameters
w(a) are computed as the solution of the system A(a)w(a) = b(a). A(a) and b(a)

are updated incrementally in a way that the solution w(a) is the least-squares
solution to our approximation. All entries in A(a) and b(a) are initially set to
0.

Consider a sample transition (n, a, n1, n2, c)—in state n, action (branching
rule) a was chosen causing transitions to states n1 and n2 with total node cost
c. Note that for transitions to branching nodes, n1 and/or n2 are greater than
0, but for contradiction and/or satisfaction nodes, n1 and/or n2 are set to 0
(the absorbing state). The new sample q̂(n, a) for Q̂(n, a) is then computed
using the Bellman optimality equation

q̂(n, a) = c+min
a′

{

Q̂(n1, a
′)
}

+min
a′

{

Q̂(n2, a
′)
}

.

The values Q̂(n1, a
′) and Q̂(n2, a

′) are computed straight from the current
approximation. Finally, the new sample q̂(n, a) is inserted in A(a) and b(a) as
follows:

A(a) = A(a) + λ(n) ∗ φ(n)φ(n)ᵀ, b(a) = b(a) + λ(n) ∗ φ(n)q̂(n, a).

λ(n) is a weight factor that is used to determine the importance of each sample
in the set. Our reason for using reweighting is that during a typical run of
the #DPLL procedure there are exponentially more samples from the region

10

around the leaves of the tree compared to samples from the region around the
root of the tree. This inherent weighting can bias the least-squares solution.
Our reweighting scheme attempts to cancel this effect by defining λ(n) as

λ(n) = 2n/N − 1,

where N is the total number of variables in the original SAT instance the
samples are taken from.

The use of the current approximation in determining new samples can be
problematic, especially at the very beginning of the learning process when the
approximator is inaccurate. A way around this problem is to go through two
learning phases. In the first phase, the value functions Q̂(a)(n) for each fixed
policy consisting of a single branching rule (action) is learned. In this case,
the new samples are computed as

q̂(a)(n) = c+ Q̂(a)(n1) + Q̂
(a)(n2).

The use of the approximation here is not problematic, because, within any
run of #DPLL with a fixed a, the Q̂(a)(n) values for smaller n are learned first
before values for bigger n. Since n > n1 and n > n2, Q̂

(a)(n1) and Q̂
(a)(n2)

will be fairly accurate when they are invoked. In other words, in learning
Q̂(a)(n), all interactions between the branching rules are ignored and each is
evaluated separately. In the second phase, the value functions Q̂(a)(n) are used
as a first approximation to Q̂(n, a). Through the use of the minimum operator
in determining the new samples, all interactions between branching rules are
now taken into account.

4.5 Policy Construction

The policy for selecting branching rules can be constructed dynamically through
the use of the value function. Depending on how the value function is learned,
different policies may result. In particular, we consider three cases:

• IND In state n, select the branching rule a that minimizes Q̂(a)(n). This is
the policy that results from the individual value functions for each branching
rule.
• ALL In state n, select the branching rule a that minimizes Q̂(n, a). In this
case, Q̂(n, a) has been learned using Q̂(a)(n) as a first approximation (two
phases).
• SCR Like ALL, in state n, select the branching rule a that minimizes
Q̂(n, a). However, in this case, Q̂(n, a) has been learned from scratch.
• RND In state n, select one of the branching rules uniformly at random.
This is a purely randomized policy and is used as measure of comparison.

11

5 Experimental Results

The SAT instances that were used for experimentation fall into the following
classes:

• Graph Coloring: These are SAT encodings of graph coloring problems avail-
able from the online Satisfiability Library (SATLIB) 4 . We used the set
flat050-115 that encodes problems with 50 nodes, 115 edges, and 3 colors.
The SAT encodings contain 150 variables and 545 clauses.
• Random 3-CNF: These are random satisfiable 3-CNF instances, generated
using the mkcnf generator by Allen Van Gelder 5 .
• Network Reliability: These are SAT encodings of feed-forward networks. The
#SAT solution of such an instance indicates the number of possible routes
from the source to the sink and therefore provides a measure of the reliability
of the network.
• RDUP: These are “random deep unit propagation” instances with 60 vari-
ables and 157 clauses that consist of two disjoint subinstances. The first
subinstance (40 variables) allows for deep unit propagations (chained clauses)
and it is fixed:

(x̄1 + x̄2 + x3)(x̄2 + x̄3 + x4)...(x̄38 + x̄39 + x40)

(x2 + x̄3)(x4 + x̄5)...(x38 + x̄39).

The second (20 variables) is a random 3-CNF generated by the mkcnf gen-
erator. We designed this distribution so it would exhibit different behavior
from the others.

Results are presented from the Graph Coloring and the RDUP classes only.
The results from the other classes are similar to those from the Graph Coloring
class.

5.1 Methodology

For each class of problems, a set of 100 instances was used for training. For
the two-phase learning, the individual value functions were learned first by
going through the training set once for each branching rule using solely that
branching rule. Then, in the second phase, 10 more passes through the set
were executed with a 1 − ε randomized policy (ε = 1.0 for the first 7 and
ε = 0.4 for the rest), for a total of 17 passes. When learning from scratch,

4 URL: http://www.satlib.org
5 Available from ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/
contributed/UCSC/instances/.

12

10
4

10
5

10
6

Av
er

ag
e

N
um

be
r o

f N
od

es

MAMS MOMS MAXO JW UP GUP SUP IND ALL SCR RND

Fig. 1. Performance (nodes) on the Graph Coloring class.

a total of 17 passes were performed (14 with ε = 1.0 and 3 with ε = 0.4).
Three sets of learned parameters were stored corresponding to the policies
IND, ALL, and SCR described previously. A polynomial of degree 7 was used
in the approximation.

Performance of the learned policies was tested on a separate test set of 100
instances from the same class. All instances in the test set were solved and the
average number of nodes, as well as the average running time, were recorded.
The results were compared against the performance of each individual branch-
ing rules on the test set and against the purely random policy RND. All code
was written in C and all experiments were performed on an Alpha 164LX ma-
chine. Running times correlated closely with node counts (at approximately
100k nodes/sec), and are not reported here.

5.2 Performance Results

Figure 1 shows the performance of all branching rules and the learned policies
on instances taken from the Graph Coloring class (error bars indicate the
95% reliability intervals). The learned policies (IND, ALL, SCR) achieve a
performance level equal to that of the best branching rules, but not better.
Nevertheless, they do better than chance, as the RND bar indicates. This
behavior can be easily explained by looking at the learned value function
(Figure 2). Using the number of variables as the state of the process, the
branching rules MOMS, JW, MAMS and MAXO are almost indistinguishable
and clearly dominate the others (UP, GUP, SUP). In this case, our selection

13

0 50 100 150
0

5

10

15

Number of Variables

Q
−v

al
ue

s
(lo

g)

UP

GUP

JW

MAXO

SUP

MAMS

MOMS

Fig. 2. Learned value function for the Graph Coloring class.

scheme cannot take advantage of switching to different branching rules, and
the resulting performance matches that of the dominating branching rule.

Performance results on the RDUP class are shown in Figure 3. In this case,
the learned policies IND and ALL are statistically better than any of the
individual branching rules. Learning from scratch (SCR) did about as well as
the best individual branching rule; it seems that the two-phase learning yields
better approximations in this case. What is more interesting is that moving
from IND to ALL did not improve performance, although the corresponding
value functions were quite different.

Looking at the value function for ALL (Figure 4), it is easy to see that there is
no dominating branching rule and therefore switching between branching rules
at run time can be used to advantage. One can see that in the region 40–60,
MAXO is presumably used to solve the 20-variable subinstance, whereas in
the region 0–40, the UP and GUP branching rules are used for the 40-variable
subinstance, for which they are the most appropriate. In this case, using size as
the single state feature was sufficient to find a cut between these two regimes
and to make a large performance difference.

6 Limitations and Future Work

The main weakness of this work is clearly the insufficient state representation.
The number of variables provides only a coarse partition of the space of pos-
sible SAT instances and throws away much of the structure in the problem.

14

10
3

10
4

10
5

10
6

10
7

10
8

Av
er

ag
e

N
um

be
r o

f N
od

es

MAMS MOMS MAXO JW UP GUP SUP IND ALL SCR RND

Fig. 3. Performance (nodes) on the RDUP class.

A good state description would partition the space of instances in a way that
different branching rules are best in different regions of the partition. How-
ever, such good state features for SAT are yet to be discovered. Features such
as the induced graph width might be good candidates, but they come at a
significant computational cost that might outweigh their usefulness.

Nevertheless, this work demonstrates that some degree of reasoning, learn-
ing, and decision making on top of traditional search algorithms can improve
performance beyond that possible with a fixed set of hand-built branching
rules.

Acknowledgments

Research supported in part by NSF grant IRI-9702576. The first author was
also partially supported by the Lilian-Voudouri Foundation in Greece. The
authors gratefully acknowledge the influence of Don Loveland, Ron Parr, and
Henry Kautz in helping to shape this work.

References

Birnbaum, E., Lozinskii, E. L., 1999. The good old Davis-Putnam procedure
helps counting models. Journal of Artificial Intelligence Research 10, 457–
477.

15

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

Number of Variables

Q
−v

al
ue

s
(lo

g)

UP

GUP

JW

MAXO

SUP

MAMS

Fig. 4. Learned value function for the RDUP class.

Boyan, J. A., 1999. Least-squares temporal difference learning. In: Bratko, I.,
Dzeroski, S. (Eds.), Machine Learning: Proceedings of the Sixteenth Inter-
national Conference. Morgan Kaufmann, San Francisco, CA, pp. 49–56.
Bradtke, S. J., Barto, A. G., 1996. Linear least-squares algorithms for temporal
difference learning. Machine Learning 22 (1/2/3), 33–57.
Davis, M., Logemann, G., Loveland, D., 1962. A machine program for theorem
proving. Communications of the ACM 5, 394–397.
Hooker, J. N., Vinay, V., Dec. 1995. Branching rules for satisfiability. Journal
of Automated Reasoning 15 (3), 359–383.
Lagoudakis, M. G., Littman, M. L., 2000. Algorithm selection using reinforce-
ment learning. In: Langley, P. (Ed.), Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning. Morgan Kaufmann, San Francisco,
CA, pp. 511–518.
Li, C. M., Anbulagan, 1997. Heuristics based on unit propagation for satisfi-
ability problems. In: Proceedings of the Fifteenth International Joint Con-
ference on Artificial Intelligence. Nagoya, Aichi, Japan, pp. 366—371.
Majercik, S. M., Littman, M. L., 1998. MAXPLAN: A new approach to proba-
bilistic planning. In: Simmons, R., Veloso, M., Smith, S. (Eds.), Proceedings
of the Fourth International Conference on Artificial Intelligence Planning.
AAAI Press, pp. 86–93.
Rice, J. R., 1976. The algorithm selection problem. Advances in Computers
15, 65–118.
Roth, D., 1996. On the hardness of approximate reasoning. Artificial Intelli-
gence 82 (1–2), 273–302.
Valiant, L. G., 1979. The complexity of enumeration and reliability problems.
SIAM Journal of Computing 8 (3), 410–421.

16

