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Abstract— We consider the problem of allocating a number
of exploration tasks to a team of mobile robots. Each task
consists of a target location that needs to be visited by a robot.
The objective of the allocation is to minimize the total cost,
that is, the sum of the travel costs of all robots for visiting
all targets. We show that finding an optimal allocation is an
NP-hard problem, even in known environments. The main
contribution of this paper is PRIM ALLOCATION, a simple and
fast approximate algorithm for allocating targets to robots
which provably computes allocations whose total cost is at
most twice as large as the optimal total cost. We then cast
PRIM ALLOCATION in terms of a multi-round single-item
auction where robots bid on targets, which allows for a decen-
tralized implementation. To the best of our knowledge, PRIM
ALLOCATION is the first auction-based allocation algorithm
that provides a guarantee on the quality of its allocations. Our
experimental results in a multi-robot simulator demonstrate
that PRIM ALLOCATION is fast and results in close-to-optimal
allocations despite its simplicity and decentralized nature. In
particular, it needs an order of magnitude fewer bids than
a computationally intensive allocation algorithm based on
combinatorial auctions, yet its allocations are at least as good.

I. INTRODUCTION

In this paper, we develop algorithmic foundations for
the dynamic assignment and re-assignment of exploration
tasks to robot teams. The amount of interest in multi-robot
systems is considerable [1] [2] since teams of robots are
both more fault tolerant (due to redundancy) and faster
(due to parallelism) than single robots. Multi-robot task
allocation problems require a team of robots to perform a
number of tasks. Tasks may be given to the robots before
execution [3] or may be dynamically generated during
execution [4]. Our methods can be used in either context,
although in this paper we assume that the tasks are given
to the robots before execution.

As an example of an exploration task, consider a Mars
exploration scenario where a team of rovers must visit
given target locations to collect rock probes. Since the
robots do not have complete prior information about the
environment, it might be necessary or it can be beneficial
to re-allocate targets to robots as the robots discover more
about the environment, for example, when a robot discovers
that it is separated by a big crater from its target. The
robots cannot be preprogrammed if the environment is not
completely known in advance. Furthermore, they cannot

easily be tele-operated due to communication delays, com-
munication disruptions and bandwidth limitations. Thus,
science return can be maximized by endowing them with
autonomy that allows them to coordinate their activities in
order to best utilize their energy and time.

Centralized solutions to multi-robot task allocation prob-
lems of this kind create bottlenecks in the system and are
thus prone to fail. Multi-robot task allocation problems are
therefore frequently solved in a decentralized way with
market mechanisms. In one-to-one exchanges, two robots
swap one target for another one, possibly with some side
payments [5]. In single-item auctions, robots bid on targets
that are auctioned off individually. The highest-bidding
robot wins the target and then has to visit it [6] [7] [8]. As
the robots gain more information about the environment
during execution, additional auctions can be run to change
the allocation of targets to robots. This approach has several
advantages that have been demonstrated on real robots [9]
[8]. First, communication and control are fast: the robots
exchange only numeric bids and compute their bids in
parallel. Second, control is robust: the total cost (that is,
the sum of the travel costs of all robots) degrades only
marginally as they fail or cannot communicate with each
other. Third, control is adaptive: robots react immediately
to new information about the environment or failures
of other robots. Fourth, control is efficient: targets are
allocated and re-allocated to robots quickly to ensure that
the robots visit them with a small total cost.

However, the existing one-to-one exchanges and single-
item auctions offer no guarantees on the quality of their
allocations and may result in highly suboptimal allocations.
This is not surprising since we will prove in this paper that
finding an allocation of targets to robots that minimizes
the total cost is an NP-hard problem, even in known
environments. Consider, for example, the simple gridworld
example of Figure 1 with two robots (R1 and R2) and four
targets (G1, G2, G3, and G4). Each robot bids on all targets
separately; the bid is the cost for visiting a target from the
current robot location. The robot with the smallest bid for
a target wins that target. Robot R1 wins G1 and G3 and
visits G3 first and then G1, while robot R2 wins G2 and
G4 and visits G4 first and then G2, for a total cost of 33
units. However, this allocation of targets to robots is clearly
suboptimal, since the total cost is only 17 units if robot R1
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Fig. 1. Motivating example.

first visits G3 and then G4, while robot R2 first visits G2
and then G1.

Given the limitations of single-item auctions for multi-
robot task allocation, several researchers have shifted their
focus to combinatorial auctions [10] [11] [12] [3]. In com-
binatorial auctions, bidders bid on combinations (bundles)
of items. Such auctions are useful when there is a strong
interaction between items in the sense that the value of
winning a bundle of items is different from the sum of
the values of the individual items. Our example showed
that such interactions exist for exploration problems. Un-
fortunately, formulating bids and choosing winners is much
more computationally intensive for combinatorial auctions
than for single-item auctions.

In this paper, we develop PRIM ALLOCATION, a simple
algorithm that, different from combinatorial auctions, is
fast and, different from single-item auctions, yields allo-
cations whose total cost is provably at most twice as large
as the minimum total cost. PRIM ALLOCATION can be
cast in terms of a multi-round single-item auction where
robots bid on targets. This view allows for a decentralized
implementation, resulting – to the best of our knowledge –
in the first auction-based allocation algorithm that provides
a guarantee on the quality of its allocations. Our inspiration
comes from the insight that one-to-one exchanges and
single-item auctions relate to solution methods for traveling
salesman problems (TSPs) [13]. One-to-one exchanges are
decentralized mechanisms similar to Lin-Kernighan-type
centralized TSP methods [14], and single-item auctions
are decentralized mechanisms similar to centralized greedy
TSP methods. Certain TSP methods offer guarantees on
their tour lengths and we make use of them to design PRIM
ALLOCATION. It is interesting to note that PRIM ALLOCA-
TION is very similar to previous single-item auctions, with
the main difference being that the robots do not bid the cost
from their current location to the target in question, as is
common in the literature, but rather bid the smallest cost
from any target they already own to the target in question.

In the following, we describe PRIM ALLOCATION, show
how it can be used in dynamic environments, and then use
TEAMBOTS [15], a popular multi-robot simulator, to ex-
perimentally compare it against other allocation algorithms
in both static and dynamic environments.

II. THE EXPLORATION PROBLEM

The exploration problem in known environments can be
formulated as follows: We are given the locations of N
robots and M targets, as well as a cost function c that
specifies the cost of moving from one location to another
one for each pair of locations. We assume that the costs

are symmetric and uniform over robots (the robots are
identical) and satisfy the triangle inequality (the robots
operate on the Euclidean plane). The cost between two
locations is infinite if one location cannot be reached from
the other. The objective is to find an allocation of targets
to robots and a path for each robot that visits the targets
allocated to it, so that the total cost (that is, the sum of the
travel costs of all robots) is minimized.

This exploration problem can be represented with a
weighted, undirected, and complete graph G. The vertices
of the graph V = VR∪VT correspond to the locations of the
robots (VR) and targets (VT ). The edge costs correspond to
the costs of moving from one location to another one, as
given by the cost function c. The objective is to partition
the vertices so that there is exactly one robot vertex in each
partition, and find paths that connect all vertices in each
partition, starting with the robot vertex, so that the total
cost of all paths is minimum. The exploration problem can
thus be thought of as a multi-agent version of the Euclidean
Traveling Salesman Problem (TSP) [13] where the agents
are not required to return to their initial locations.1

Theorem 1 proves that solving the exploration problem
optimally is an NP-hard problem.

Theorem 1. There is no polynomial-time algo-
rithm for solving the exploration problem opti-
mally, unless P = NP .
Proof. A TSP can easily be reduced in polyno-
mial time to an exploration problem as follows:
Pick an arbitrary vertex v of the TSP graph.
Construct a complete graph with the vertices of
the TSP and two additional vertices, called x and
y. v is a robot vertex in the new graph. All other
vertices are target vertices. The edges of the new
graph have the same costs as the corresponding
edges in the TSP graph. The cost of the edge
between x and v is infinite, and the cost of the
edge between x and y is zero. The costs of the
edges between x and the vertices other than v and
y are the same as the costs of the edges between v
and the corresponding vertices in the TSP graph.
The costs of the edges between y and the vertices
other than x are infinite. An optimal solution of
the exploration problem is necessarily a path that
starts at v and ends with x followed by y. The
part of the path from v to x is an optimal solution
to the TSP since x is a replica of v. Since solving
TSPs optimally is an NP-hard problem, solving
the exploration problems optimally must also be
an NP-hard problem. QED

III. PRIM ALLOCATION

Since the exploration problem is an NP-hard problem,
one cannot hope to find an optimal allocation efficiently.
We therefore use ideas from approximate TSP algorithms

1The algorithms and results of this paper apply also to vehicle-routing
problems, where the agents are required to return to their initial locations.



to develop an algorithm, PRIM ALLOCATION, that returns
only an approximately optimal allocation but is tractable.

For any weighted graph G, a spanning tree of G is a
connected acyclic subgraph (a tree) of G that contains all
vertices of G. A minimum spanning tree (MST) of G is a
spanning tree whose total edge cost is minimum. An MST
can be easily found for any graph in polynomial time by
either Prim’s or Kruskal’s algorithm. Prim’s algorithm [16]
is a greedy algorithm that grows an MST starting with an
arbitrary vertex of the graph. At every step it adds one more
edge (and one more vertex) to the tree; the selected edge
is the cheapest edge between any of the vertices already in
the tree and any of the vertices not in the tree.

The MST heuristic [13] finds a good solution to a TSP
in polynomial time. It first finds an MST of the TSP graph
and then converts it into a tour (the MST tour), as follows:
an initial cycle is generated by starting at any vertex of the
MST and performing a complete depth-first search of the
tree. This cycle is optimized by taking shortcuts whenever
possible by skipping vertices that have already been visited
earlier. The following well-known result shows that the
MST tour is a good approximation of an optimal tour.

Fact 1. The total cost of the MST tour is at most
twice the total cost of an optimal TSP tour.

We can proceed in a similar way for the exploration
problem. Given that the objective of the exploration prob-
lem is to allocate one cluster of targets to each robot and
derive one path for each robot, instead of finding a single
MST, we seek to find a minimum spanning forest (MSF),
namely a minimum-cost collection of trees that spans all
vertices of the graph and each tree contains exactly one
robot vertex. This is accomplished by our algorithm, called
PRIM ALLOCATION. In the spirit of Prim’s algorithm for
MSTs, PRIM ALLOCATION grows an MSF, starting with
the robot vertices as the initial trees, by adding a target
vertex at each step to a tree that yields the least increase
in the total cost, until all target vertices are included in
the forest. The resulting trees determine the allocation, and
the paths are derived through the MST heuristic (since the
paths need not be closed-loop tours, the most expensive of
the two edges adjacent to the robot in each tour is deleted).
PRIM ALLOCATION is summarized below.

Algorithm: PRIM ALLOCATION(VT , VR, c)
1) For each robot i, construct a tree Ti that contains

only the corresponding robot vertex from VR

2) While (VT 6= ∅) do
a) For all i, ci = minv∈VT minw∈Ti{c(v, w)}
b) j = arg mini ci

c) vj = arg minv∈VT
minw∈Tj{c(v, w)}

d) Attach vj to Tj

e) VT = VT − {vj}
3) For all i, use the MSF heuristic on Ti to construct

the path for robot i

The following theorem proves that steps 1–2 of PRIM
ALLOCATION indeed find an MSF.

Theorem 2. PRIM ALLOCATION finds an MSF.
Proof. Let G be the graph of the exploration
problem. Construct a new weighted graph G′,
identical to G, except that all edge costs between
vertices in VR are 0. An MST T ′ of graph G′ has
exactly the same total cost as an MSF of graph G.
An MSF of G can be derived from T ′ by simply
deleting the edges between the robot vertices.
Running PRIM ALLOCATION on G is identical to
running the conventional Prim algorithm on G′

starting from any vertex in VR. If the spanning
forest found by PRIM ALLOCATION was not
an MSF, the implication would be that Prim’s
algorithm does not find an MST. Therefore, the
optimality of PRIM ALLOCATION is guaranteed.
QED

The following theorem proves that the total cost of the
resulting allocation can be at most twice as large as the
total cost of an optimal one.

Theorem 3. PRIM ALLOCATION finds an allo-
cation for the exploration problem whose total
cost is at most twice the total cost of an optimal
allocation.
Proof. By construction, an optimal allocation OA
is also a spanning forest with exactly N trees;
each tree in this forest is a trivial single-branch
tree (the robot path). This spanning forest is not
necessarily a minimum one, so

c(MSF) ≤ c(OA) ,

where c(MSF) and c(OA) denote the total cost
of an MSF and an OA, respectively. By Fact 1
and Theorem 2, the solution PA of PRIM ALLO-
CATION has a maximum total cost of 2c(MSF),

c(PA) ≤ 2c(MSF) .

This is true because PRIM ALLOCATION finds
an MSF first, and then uses the MST heuristic
in every tree of the MSF for constructing the
robot paths. So, for each robot the total cost of
its path is at most twice the total cost of the
corresponding tree, and, additively, the total cost
of all paths is at most twice the total cost of the
MSF. Therefore, we have c(PA) ≤ 2c(MSF) ≤
2c(OA). Thus, PRIM ALLOCATION finds an al-
location for the exploration problem whose total
cost is at most twice the total cost of an optimal
allocation. QED

IV. RUN-TIME COMPLEXITY

PRIM ALLOCATION could be implemented with a single
priority queue, similarly to Prim’s algorithm. However, in
this paper we chose to analyze an implementation with
multiple priority queues taking advantage of the specifics
of the exploration problem. Not only do we show a better



complexity bound with this approach, but we also show
how this makes a decentralized auction implementation
possible.

A priority queue is maintained for each of the N robots;
each queue contains the unallocated targets indexed by
their least connection cost to the robot’s tree. These queues
can be initialized in O(M) time for each robot, or O(NM)
total time. The main loop in step 2 is executed M times. At
each iteration, one queue is selected (step 2b) in time O(N)
and its top element is extracted in time O(log2 M) and
is allocated to the corresponding tree. Allocated elements
can be recognized in constant time if an identifier is placed
on each element during allocation. At the same time, the
allocated element needs to be deleted from all other queues
in time O(log2 M) (assuming that there are appropriate
pointers to each target in each queue). So, the total time
for all extractions and deletions is O(NM log2 M). Also,
the winning queue in each iteration has to update all the
remaining unallocated targets in the queue with the new
costs. This is done in O(M2 log2 M) total time for all
queues over all M iterations. So, the total time for finding
an MSF is O((N +M)M log2 M). Given an MSF, finding
the paths for all robots takes only O(M). Therefore, the
time complexity of PRIM ALLOCATION is polynomial,
O((N + M)M log2 M) for N robots and M targets2.

The low time complexity of PRIM ALLOCATION implies
that it is a scalable and practical algorithm even for large
problems involving many robots and numerous targets.
This is a very useful feature in the context of dynamic
environments where re-allocation needs are frequent.

V. POSSIBLE IMPROVEMENTS

The quality of the allocations produced by PRIM ALLO-
CATION can be further improved by modifying the last step,
where the paths for the robots are constructed. Finding an
optimal path for each robot is computationally intensive.
The MST heuristic, used by PRIM ALLOCATION, is just
one way of finding a good path, but other TSP heuristics
may be used instead. In particular, there is a family of TSP
insertion heuristics (cheapest, nearest, farthest, random)
that build TSP tours incrementally by inserting targets into
a partial tour one at a time. The cheapest and the nearest
insertion heuristics yield tours that are at most twice as
costly as an optimal tour; the farthest and the random
insertion heuristics have worse worst-case bounds.

A more sophisticated heuristic, the Christofides heuristic
[17], first finds an MST, then finds a minimum-cost perfect
match3 PM among vertices with odd degree, combines
edges of MST and PM to form a multigraph, constructs
a Eulerian cycle over the multigraph, and finally forms a
tour from the cycle by skipping vertices visited before and
taking shortcuts. The Christofides heuristic yields a very
good bound on the total cost of the tour; the cost of the

2We have assumed simple priority queues implemented as binary heaps;
better complexity bounds can be derived by using Fibonacci heaps.

3A minimum-cost perfect match on a set of vertices is a pairing of
vertices so that the sum of the costs of all intra-pair edges is minimum.
The minimum-cost perfect match can be found in polynomial time.

Christofides-tour is at most 1.5 times the total cost of an
optimal TSP tour.

The best way to take advantage of all these heuristics is
to combine them. In the last step of PRIM ALLOCATION,
all heuristics can be run to find paths for all robots and
the best path can be selected for each robot. As long as
the MST heuristic is included in the set, the worst-case
bound proved above applies, but the quality of allocations
is improved in practice.

VI. DECENTRALIZED IMPLEMENTATION

PRIM ALLOCATION can be viewed as a multi-round
auction between an auctioneer and all participating robots.
Initially, all targets are unallocated and are available for
bidding. Each robot estimates the minimum cost to each
available target starting either from the current robot lo-
cation or from one of its already owned targets (since
eventually the robot will be there). This cost is the bidding
value for each target. Each robot only submits its best
(lowest) bid to the auctioneer, since no other bid has any
possibility of success at the current round. The auctioneer
collects the bids and allocates only one target to the robot
that submitted the lowest bid over all robots and all targets.
The winning robot and the robots that placed their bid on
the allocated target are notified and are asked to resubmit
bids given the remaining targets. The bids of all other
robots remain unchanged. The auction is repeated with the
new bids, and so on, until all targets have been allocated.

Consider, for example, the simple example in Figure 1.
In the first round, robot R1 bids 4 (the distance between R1
and G3) for target G3 (the closest target to it), and robot
R2 bids 5 for target G4. Robot R1 wins target G3 since its
bid was the smallest one. In the second round, robot R1
bids 3 (the distance between G3 and G4) for target G4, and
robot R2 still bids 5 for target G4. Robot R1 wins target
G4 since its bid was again the smallest one. In the third
round, robot R1 bids 8 for target G1, and robot R2 bids
7 for target G2. Robot R2 wins target G2. Finally, in the
fourth round, robot R1 bids 8 for target G1, and robot R2
bids 3 for G1. Robot R2 wins target G2, at which point
all targets have been allocated. So, robot R1 first visits G3
and then G4, whereas robot R2 first visits G2 and then G1,
which is an optimal allocation.

This view of PRIM ALLOCATION allows for a decen-
tralized implementation. The calculation of the bids can
be performed locally by each robot through some path
planning algorithm on a stored map. Additionally, each
robot can maintain a local priority queue with its own bids
to identify the best one easily. Finally, once the allocation is
completed at the end of the auction, each robot can locally
compute its own path using a number of TSP heuristics as
discussed in the previous section. Note that at each round
of the auction each robot needs to submit only a single bid
and there is one round for each target. Therefore, for N
robots and M targets, the total number of bids in the entire
auction is at most NM .

The auctioneer can be situated on one of the robots or
on some central workstation. The auctioneer needs to be



able to communicate with all robots, but the robots do
not need to communicate with each other. For M targets,
only O(M) numbers (the target identifiers and the numeric
bids) need to be communicated over a single link. The
auctioneer is by design a fairly simple entity. Its job is
to collect the N bids, select the minimum, and notify
the robots to resubmit bids. Therefore, it is conceivable
that the auctioneer function can be implemented in a
decentralized way to avoid having a centralized point that
may affect the entire system in case of failure. A trivial
way to achieve such a decentralized system is to have
each robot individually perform the auctioneer function,
by identifying the winner at each round and waiting for
the new bids before starting the next round. In this case,
it is assumed that all bids can be broadcast to all robots,
so the robots need to be able to communicate with each
other. Nevertheless, the total amount of communication is
rather low, at most O(NM) numbers for all robots.

A. Dynamic Environments

While the robots explore an environment, the envi-
ronment or their information about it can change. For
example, the robots might not have an a-priori map of the
environment available or they might have a map available
but initially do not know which doors are open. In this case,
the robots initially make default assumptions, for example,
the optimistic assumption that every patch of the environ-
ment is easily traversable unless they know otherwise. The
sensors on-board a robot report obstacles in their vicinity
during exploration. The robot can then update its map and
broadcast this information to the other robots, so that they
can update their maps as well and then recalculte distances
between locations. Thus, the distances between locations
effectively change during exploration, which is why we
call these environments dynamic. This change provides
an opportunity to improve the current allocation. Thus,
whenever new map information is sensed and the maps
thus change, we rerun the decentralized version of PRIM
ALLOCATION to obtain a good allocation for the new maps
(which is, of course, subject to further changes). Running
PRIM ALLOCATION frequently is possible because it is
fast. However, as long as the robots just visit their allocated
targets without any changes to the maps, then there is
no need to rerun PRIM ALLOCATION since it calculates
the same MSF and thus also the same allocation. The
following pseudocode describes the resulting DYNAMIC
PRIM ALLOCATION:

Algorithm: DYNAMIC PRIM ALLOCATION(VT , VR, c)

1) While there are unvisited targets
a) Obtain c from the map.
b) Run PRIM ALLOCATION(VT , VR, c), where VT

is the set of yet unvisited target vertices
c) Move the robots along their paths as long as

there are unvisited targets and the map remains
unchanged.

VII. OTHER ALLOCATION ALGORITHMS

This section outlines three other allocation algorithms
(an optimal method, a single-item auction method, and
a combinatorial auction method) and makes a high-level
comparison to PRIM ALLOCATION. It also outlines an
interesting variant of PRIM ALLOCATION.

A. An Optimal Method

Our optimal method, referred to as OPTIMAL, uses an
Integer Programming (IP) formulation of the exploration
problems and the commercial IP solver CPLEX to find
an optimal allocation under the assumption that the en-
vironment is static4. Our IP formulation is similar to IP
formulations of TSPs. Let VR denote the set of robot
vertices and VT the set of target vertices. Let xij be
indicator (0/1) variables for i ∈ VT ∪ VR and j ∈ VT .
If xij = 1, then location j must be visited directly after
location i. The IP model is shown below.

Minimize
∑

i∈VT∪VR,j∈VT

c(i, j)xij

subject to
∑

i∈VT∪VR

xij = 1 ∀j ∈ VT

∑

j∈VT

xij ≤ 1 ∀i ∈ VT ∪ VR

∑

i,j∈U

xij ≤ |U | − 1 ∀U ⊆ VT : |U | ≥ 2

The first set of constraints ensures that target locations
are visited exactly once, the second set that robot and
target locations are left at most once and, finally, the third
set that there are no cycles among the target locations
(subtour elimination constraints). This IP formulation is
solved with the commercial IP solver CPLEX to find
an optimal allocation. The third set of constraints grows
exponentially in the number of target vertices, which results
in large runtimes of the IP solver even for problems of
moderate size. The cutting-plane method can be used to
speed up the solution process. This method leaves out the
subtour elimination constraints, solves the IP, adds those
subtour elimination constraints violated by the solution,
and repeats the process until the solution no longer violates
any subtour elimination constraints. This optimal method
provides a means for evaluating PRIM ALLOCATION ex-
perimentally, but it becomes very inefficient for larger
exploration problems, and thus cannot be used effectively
in practice.

4It is thus not guaranteed to find an optimal allocation in dynamic envi-
ronments, which is why we refer to it as “OPTIMAL” (with apostrophes)
in this case.



Fig. 2. Counterexample.

B. A Single-Item Auction Method

A variety of single-item auction methods have been
proposed for exploration problems in the literature. One
of them, due to Dias and Stentz [18], works as follows:
Initially, all targets are unallocated. The robots bid on all
unallocated targets. The bid for each target is the difference
between the total cost for visiting the new target and all
targets already allocated to the robot and the total cost
for visiting only the targets already allocated to the robot.
These total costs are computed using a TSP insertion
heuristic. The robot with the overall lowest bid is allocated
the target of that bid and then is no longer allowed to bid.
The auction continues with the remaining robots and all
unallocated targets. After every robot has won one target,
all robots are again allowed to bid, and the procedure
repeats until all targets have been allocated. Finally, single
targets are transferred from one robot to another, starting
with the target transfer that decreases the total cost the
most, until no target transfer decreases the total cost any
longer.

Unfortunately, this combination of single-item auctions
(to compute an initial allocation) and one-to-one exchanges
(to optimize the initial allocation) does not provide any
guarantee on the quality of its allocations, which can be
arbitrarily bad. Figure 2 shows an example with two robots
(A and B) and three targets (1, 2, and 3). During the
first round of bidding, first target 1 is allocated to robot
B and then target 2 is allocated to robot A. During the
second round of bidding, target 3 is allocated to robot A
because its cost increases less than the one of robot B if it
wins target 3. Figure 2 shows the resulting allocation. No
targets are transferred between robots during the one-to-
one exchanges, because the total cost cannot be decreased
with a single target transfer. The total cost of the final
allocation is large because the property that every robot
is allocated one target before another round of bidding is
conducted can result in bad allocations of targets to robots
which subsequently cannot be improved by target transfers
that transfer only one target at a time. PRIM ALLOCATION,
on the other hand, allocates all targets to robot B and thus
finds an optimal allocation.

C. A Combinatorial Auction Method

Combinatorial auction methods bid on bundles of targets.
It is crucial for them to select which bundles of targets to
bid on since the number of bundles grows exponentially in
the number of targets, which prevents them from bidding
on all bundles. GRAPH CUT has been shown to outper-
form several alternative combinatorial auction methods for
exploration problems [3]. It selects bundles as follows:
Each robot considers the complete weighted graph over all
targets. It uses an (approximate) Maximum Cut algorithm

to split the graph into two parts by removing edges so
that the total cost of the removed edges is maximized.
The targets in each of the two subgraphs form one bundle
each. The robot then invokes the Maximum Cut algorithm
recursively for each of the two subgraphs to generate
further bundles, until the subgraph contains only one target.
GRAPH CUT then bids for each bundle the cost of the robot
for visiting all targets in the bundle, computed with a TSP
insertion heuristic.

D. A Variant of Prim Allocation

An interesting variant of PRIM ALLOCATION can be
obtained by making use of a TSP insertion heuristic instead
of the MST heuristic. This variant, called INSERTION
ALLOCATION, works just like PRIM ALLOCATION, except
that robots compute their bids as in the single-item auction
method presented above. In particular, each robot maintains
a path, rather than a spanning tree, and initially all robot
paths are empty. At each round, robots bid on unallocated
targets and the winning robot adds one more target to its
own path. The bid for a target is the difference between
the costs of the paths of that robot with and without the
target in question. The paths and their costs are computed
using a TSP insertion heuristic. Robots submit only one
bid per round and the robot with the overall lowest bid
is allocated the corresponding target which is added to its
path. In essense, INSERTION ALLOCATION is the same as
the single-item auction method presented above, except that
winning robots are not removed from the auction, and no
target transfer takes place at the end of the auction.

INSERTION ALLOCATION might be advantageous in
cases where the MSF found by PRIM ALLOCATION con-
sists of trees with numerous branches. In such cases, using
the MST heuristic to turn each tree into a path may not
yield very good paths, whereas building the robot paths
incrementally through a TSP insertion heuristic takes the
path cost directly into account. The main difference is
that, during the allocation process, PRIM ALLOCATION
considers the tree costs, whereas INSERTION ALLOCATION
considers the path costs. In that sense, the latter may yield a
better allocation. Although it is not know yet if INSERTION
ALLOCATION provides any guarantee on the quality of its
allocations, it can be expected to perform well in practice.

VIII. EXPERIMENTAL RESULTS

Our testbed consists of several exploration problems
where three robots navigate in a virtual building that
consists of rooms which are connected through doors.
Doors are closed with probability 0.2 but all targets are
reachable. In each problem, all robots start at the same
location and must visit 20 targets, arranged in k clusters,
where k = 1, 2, ..., 10. The distribution of clusters in
the building is uniform, and the distribution of targets
within each cluster is normal. We distinguish between static
and dynamic environments depending on the a-priori map
information that is available to the robots:



Fig. 3. MSF (dashed lines) and MST paths (solid lines).

• Static environments: all robots know a complete and
accurate map of the building, including which doors
are closed.

• Dynamic environments: all robots know a complete
and accurate map of the building but do not know
which doors are closed. A robot observes the state of
a door when it reaches it, at which point it broadcasts
this information to all other robots. As long as a robot
does not know the state of a door, it optimistically
assumes that it is open.

We compare four algorithms: OPTIMAL, GRAPH CUT,
PRIM ALLOCATION, and INSERTION ALLOCATION. In
static environments, each algorithm is run only once to find
an allocation. In dynamic environments, each algorithm
is run every time the map changes. We tested the four
algorithms in TEAMBOTS [15], a realistic multi-robot sim-
ulator. Figure 3 shows a screenshot of the MSF found by
PRIM ALLOCATION and the corresponding MST paths for
each robot for a simple exploration problem with 2 robots
and 11 targets in 2 clusters. Similarly, Figure 4 shows the
actual path of each robot in a more complex exploration
problem with 3 robots (that start at the same location in
the center of the building) and 20 targets in 4 clusters.
Table I shows experimental results in static environments,
and Table II shows results in dynamic environments. The
tables show the total cost and the total number of bids for
each algorithm and each clustering of targets. Each table
entry is averaged over 10 runs with identical settings, but
different distributions of targets.

The total cost of GRAPH CUT is fairly close to optimal,
but its number of bids is significantly larger than that
of the other auction methods. The total cost of PRIM
ALLOCATION is also very close to optimal and much better
than the theoretical factor of two suggests. The total cost of

Fig. 4. PRIM ALLOCATION in TEAMBOTS (3 robots, 20 targets).

INSERTION ALLOCATION is even closer to optimal. Note
that both PRIM ALLOCATION and INSERTION ALLOCA-
TION use much simpler auction mechanisms and bidding
strategies than GRAPH CUT, yet result in smaller total costs
with an order of magnitude fewer bids. Our experimental
results therefore show that both PRIM ALLOCATION and
its variant, INSERTION ALLOCATION, are fast and result
in close-to-optimal allocations, despite their simplicity and
decentralized nature.

IX. CONCLUSION

In this paper, we have developed algorithmic foundations
for allocating a number of exploration tasks to a team
of mobile robots. We showed that finding an optimal
allocation is an NP-hard problem. Our approximate al-
gorithm, PRIM ALLOCATION, finds an allocation with a
total cost that is at most twice as large as the total cost
of an optimal allocation. In addition, it can be easily
implemented as a multi-round single-item auction, where
robots bid on targets. To the best of our knowledge,
PRIM ALLOCATION is the first auction-based allocation
algorithm that provides a guarantee on the quality of its
allocations. We also described INSERTION ALLOCATION,
an algorithm that performs very well in practice, although
it has no known performance guarantees. We confirmed the
performance of our algorithms by comparing them exper-
imentally to other methods, including an optimal one and
a computationally intensive allocation algorithm based on
combinatorial auctions. We believe that such results of joint
research by roboticists, artificial intelligence researchers,
and operations researchers will stimulate further interest in
this exciting area of robotics.



TABLE I
EXPERIMENTAL RESULTS IN STATIC ENVIRONMENTS.

Clusters 1 2 3 4 5 6 7 8 9 10
Total Cost
OPTIMAL 178.3 229.3 184.2 190.5 231.2 240.6 248.8 236.6 297.4 299.5
GRAPH CUT 220.4 255.8 206.8 240.2 260.5 286.6 281.4 319.2 315.4 367.4
PRIM ALLOCATION 217.8 256.8 208.7 233.0 268.0 275.2 273.1 303.6 318.4 357.6
INSERTION ALLOC. 207.4 248.5 195.0 219.7 256.5 273.2 264.0 292.5 308.5 337.8
Number of Bids
GRAPH CUT 1193.4 1176.9 1194.3 1153.2 1103.1 1118.1 1139.7 1154.1 1144.2 1146.3
PRIM ALLOCATION 60 60 60 60 60 60 60 60 60 60
INSERTION ALLOC. 60 60 60 60 60 60 60 60 60 60

TABLE II
EXPERIMENTAL RESULTS IN DYNAMIC ENVIRONMENTS.

Clusters 1 2 3 4 5 6 7 8 9 10
Total Cost
“OPTIMAL” 202.6 238.5 201.5 228.5 264.4 290.0 290.0 314.3 342.4 381.4
GRAPH CUT 222.5 265.4 223.9 255.9 293.8 304.8 326.9 345.3 345.0 384.7
PRIM ALLOCATION 221.4 257.3 225.5 243.8 284.7 302.3 299.1 332.2 351.6 386.6
INSERTION ALLOC. 216.4 257.6 211.6 234.4 271.6 302.7 287.1 336.1 333.6 377.6
Number of Bids
GRAPH CUT 1243.5 1227.0 1213.5 1251.0 1222.5 1241.7 1258.5 1282.8 1274.1 1311.9
PRIM ALLOCATION 95.1 111.9 99.0 107.1 119.1 142.8 116.4 136.8 154.8 144.9
INSERTION ALLOC. 86.4 103.5 83.7 103.5 108.0 128.1 103.2 126.6 132.3 126.0
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