Learning in Zero-Sum Team M arkov Games
using Factored Value Functions

Michail G. Lagoudakis Ronald Parr
Department of Computer Science Department of Computer Science
Duke University Duke University
Durham, NC 27708 Durham, NC 27708
mgl@cs.duke.edu parr@cs.duke.edu
Abstract

We present a new method for learning good strategies in a@mo-
Markov games in which each side is composed of multiple ageoit
laborating against an opposing team of agents. Our metlopdres full
observability and communication during learning, but tharhed poli-
cies can be executed in a distributed manner. The valueifumistrep-
resented as a factored linear architecture and its steidetermines the
necessary computational resources and communicatiomlidthd This
approach permits a tradeoff between simple represensatidh little or
no communication between agents and complex, computditionten-
sive representations with extensive coordination betvaggmts. Thus,
we provide a principled means of using approximation to cantbe
exponential blowup in the joint action space of the partiaig. The ap-
proach is demonstrated with an example that shows the eiffigigains
over naive enumeration.

1 Introduction

The Markov game framework has received increased atteasoa rigorous model for
defining and determining optimal behavior in multiagentegss. The zero-sum case, in
which one side’s gains come at the expense of the other'sieisitmplest and best un-
derstood case Littman [7] demonstrated that reinforcement learninglddae applied to
Markov games, albeit at the expense of solving one lineagnara for each state visited
during learning. This computational (and conceptual) barid probably one factor behind
the relative dearth of ambitious Markov game applicatiogsingireinforcement learning.

In recent work [6], we demonstrated that many previous thigzal results justifying the
use of value function approximation to tackle large MDPsldde generalized to Markov
games. We applied the LSPI reinforcement learning algorits] with function approxi-
mation to a two-player soccer game and a router/server flowraigproblem and derived
very good results. While the theoretical results [6] areagahand apply to any reinforce-
ment learning algorithm, we preferred to use LSPI becaudel't ®fficient use of data
meant that we solved fewer linear programs during learning.

1The termMarkov gamen this paper refers to the zero-sum case unless statedvisker

Since soccer, routing, and many other natural applicatétise Markov game framework
tend to involve multiple participants it would be very uddfugeneralize recent advances
in multiagent cooperative MDPs [2, 4] to Markov games. Thesthods use a factored
value function architecture and determine the optimabaatising a cost network [1] and a
communication structure which is derived directly from gieicture of the value function.
LSPI has been successfuly combined with such methods; inriealpexperiments, the
number of state visits required to achieve good performaoalked linearly with the number
of agents despite the exponential growth in the joint actimece [4].

In this paper, we integrate these ideas and we present aritaigdor learning good strate-
gies for a team of agents that plays against an opponent taauch games, players within
one team collaborate, whereas players in different teammpete. The key component of
this work is a method for computing efficiently the best siggtfor a team, given an ap-
proximate factored value function which is a linear comhoraof features defined over
the state space and subsets of the joint action space foshigth This method integrated
within LSPI yields a computationally efficient learning atghm.

2 Markov Games

A two-player zero-sum Markov game is defined as a 6-tgled, O, P, R,~), where:

S = {s1,82,..,8,} Is a finite set of game statesd = {aj,as,...,a,} ANAO =
{01, 09, ..., 0 } are finite sets of actions, one for each playeis a Markovian state transi-
tion model —P(s, a, 0, s’) is the probability that’ will be the next state of the game when
the players take actions ando respectively in state; R is a reward (or cost) function
— R(s,a,0) is the expected one-step reward for taking actiersdo in states; and,

~ € (0,1] is the discount factor for future rewards. We will refer te tfirst player as the
maximizerand the second player as thenimizef. Note that if either player is permitted
only a single action, the Markov game becomes an MDP for thergilayer.

A policy 7 for a player in a Markov game is a mapping,: S — Q(A), which yields
probability distributions over the maximizer’s actions fach state ir5. Unlike MDPs,
the optimal policy for a Markov game may be stochastic, it enay define anixedstrategy
for every state. By convention, for any poliey 7(s) denotes the probability distribution
over actions in state andn (s, a) denotes the probability of actianin states.

The maximizer is interested in maximizing its expected¢aimted return in theninimax
sense, that is, assuming the worst case of an optimal miaimi8ince the underlying
rewards are zero-sum, it is sufficient to view the minimizeaating to minimize the maxi-
mizer's return. For any policy, we can defin€)™ (s, a, o) as the expected total discounted
reward of the maximizer when following policy after the players take actionsando for
the first step. The corresponding fixed point equatior(foris:

Q" (s,a,0) = R(s,a,0) —|—72Psaos mmZQ s’ a' o)m(s',a) .

s'eS a’€A

Given any(@ function, the maximizer can choose actions so as to maxiitsizalue:

Vis) = ax manQs a,0) (s,a) . (1)

77/(5 JEQ(A) 0€O

We will refer to the policyr’ chosen by Eq. (1) as thminimax policywith respect taQ.

2Because of the duality, we adopt the maximizer’s point ofwfier presentation.

This policy can be determined in any statby solving the following linear program:
Maximize: V(s)
Subjectto: Va € A, 7'(s,a) >0
Z 7' (s,a) =1
acA
Yoe O, V(s) < Z Q(s,a,0)7'(s,a) .
acA
If @ = @7, the minimax policy is an improved policy comparedito A policy iteration
algorithm can be implemented for Markov games in a manndogoas to policy iteration
for MDPs by fixing a policyr;, solving forQ™:, choosingr; 11 as the minimax policy with
respect ta)™ and iterating. This algorithm converges to the optimal mix policyr*.

3 Least SquaresPolicy Iteration (L SPI) for Markov Games

In practice, the state/action space is too large for an eixpéipresentation of th func-
tion. We consider the standard approach of approximatiagtunction as the linear
combination ofk basis functionsp; with weightsw;, that isQ(s, a,0) = é(s,a,0)Tw.
With this representation, the minimax poligyfor the maximizer is determined by

m(s) = argmax min w(s,a)P(s,a,0)Tw ,
m(s) €Q(A) °€0 7=

and can be computed by solving the following linear program

Maximize: V(s)
Subjectto: Vae A, w(s,a) >0
Z m(s,a) =1
acA
YoeO, V(s) < Z (s, a)p(s,a,0)Tw .
acA

We chose the LSPI algorithm to learn the weight®f the approximate value function.
Least-Squares Policy Iteration (LSPI) [5] is an approxiatlicy iteration algorithm that
learns policies using a corpus of stored samples. LSPIeppliso with minor modifi-
cations to Markov games [6]. In particular, at each iteratioSPI evaluates the current
policy using the stored samples and keeps the learned gdighépresent implicitly the
improved minimax policy for the next iteration by solvingetinear program above. The
modified update equations account for the minimizer’s aciiod the distribution over next
maximizer actions since the minimax policy is, in generacbastic. More specifically, at

each iteration LSPI maintains two matricés andb, which are updated as follows:
A= A+0(s,0,0)(6(5,0,00 =7 3 w(s,a)o(s,a',0)) T, beeb+(s,a,0)r
a’eA
for any samplgs, a, 0,7, s"). The policyn’(s’) for states’ is computed using the linear
program above. The actia#i is the minimizing opponent action in computings’) and
can be identified by the tight constraint &1s’). The weight vectorw is computed at

the end of each iteration as the solutionXa = b. The key step in generalizing LSPI
to team Markov games is finding efficient means to performelmserations despite the
exponentially large joint action space.

4 Least Squares Policy Iteration for Team Markov Games

A team Markov games a Markov game where a team dfmaximizers is playing against
a team ofM minimizers. Maximizer; chooses actions froml;, so the team chooses

actionsa = (a1, az, ...,ay) from A = A; x Ay x ... x Ay, wherea; € A;. Minimizer

i chooses actions fror®;, so the minimizer team chooses actians- (01,02, ..., 001)
from O = O x O3 x ... x Oy, Whereo;, € O;. Consider now an approximate value
functionQ(s, a, o). The minimax policyr for the maximizer team in any given statean
be computed (naively) by solving the following linear pragr.

Maximize: V(s)
Subjectto: Vae A, n(s,a) >0
> (s,) =1
acA =
VoeO, V(s) < Z m(s,a)Q(s,a,0)
acA

Since|.A| is exponential inN and |O| is exponential inM, the linear program above
has an exponential number of variables and constraints antthvie intractable to solve,
unless we make certain assumptions al@).uWe assume #actoredapproximation [2] of
the @ function, given as a linear combination kflocalizedbasis functions. Each basis
function can be thought of as an individual player’s pericepbf the environment, so
each¢; need not depend upon every feature of the state or the adt&rs by every
player in the game. In particular, we assume that eﬁgcdepends only on the actions of
a small subset of maximizer$; and minimizersO;, that is,¢; = ¢;,(s,a;,0;), where
aj € A; ando; € O; (A, is the joint action space of the palyers.ty andO; is the
joint act|on space of the palyers ;). For example, itp4 depends only on the actions of
maximizers{4, 5,8}, and the actions of minimizeks3, 2,7}, thena, € Ay x A5 x As
ando, € O3 x Oy x O7. Under this locality assumption, the approximate (facipralue
function is

Q(S7 a” 6) =

o (s,a;,05)w; ,

M-

<
Il
-

where the assignments to the's ando;’s are consistent witla ando. Given this form
of the value function the linear program can be simplifiechigantly. We look at the
constraints for the value of the state first:

k
m(s,a) Y ¢5(s,a5,0;)w;

V(is) < Y
acA Jj=1
V(S) < Z ZW(Svd)¢j(87ajvaj)wj

=
N>
IN
1]
&
2]
1]
EY
V)
Q
g
w
&Q
°
5

J=1 j a’eA\A;
k

Vi(s) < ij Z ¢;(s,a;,0;5) Z (s, a)
J=1 ajeA; a’e A\ A;
k

Vi(s) < wy Y b(s,a5,05)m5(s,a5)
j=1 ajef\j

where eachr; (s, a;) defines a probability distribution over the actions of thayglrs that
appear inp;. From the last expression, it is clear that we canige, a;) as the variables
of the linear program. The number of these variables willdgity be much smaller than
the number of variables(s,a), depending on the size of th&¢;’s. However, we must
add constraints to ensure that the local probability digtionsr;(s) are consistent with a
global distribution over the entire joint action spade The first set of constraints are the

standard ones for any probability distribution:

Vi=1,...,k : Z mi(s,a;) =1
E,jGAj
Vi=1,..,k : V(_IjGAj, Wj(S,(_Ij)ZO .
For consistency, we must ensure that all marginals over camrariables are identical:

Vi<j<h<k : VaednA, > msa)= > m(s.an) -
6.;-6/1_1'\./1}1, TI;IEA}L\A]‘

These constraints are sufficient if the running intersecpooperty is satisfied by the
m;(s)'s [3]. If not, it is possible that the resulting; (s)'s will not be consistent with any
global distribution even though they are locally consistétowever, the running intersec-
tion property can be enforced by introducing certain adddi local distributions in the set
of m;(s)’s. This can be achieved using a variable elimination praoced

First, we establish an elimination order for the maximizard we letH; be the set of all
7j(s)'s andL = @. At each step, some agentis eliminated and we |ef; be the set of alll
distributions inH; that involve the actions of agehor have empty domain. We then create
a new distributiony; over the actions of all agents that appeafjrand we placev; in L.
We then create); defined as the distribution over the actions of all agentsappear inv;
except agent. Next, we updaté{,; = H; U {w}} — & and repeat until all agents have
been eliminated. Note th&{y will necessarily be empty and will contain at mostV
new local probability distributions. We can manipulate ¢fienination order in an attempt
to keep the distributions i small (local), however their size will be exponential in the
induced tree width. As with Bayes nets, the existence andhesis of discovering efficient
elimination orderings will depend upon the topology. The7se U £ of local probability
distributions satisfies the running intersection propartgt so we can proceed with this set
instead of the original set af; (s)’s and apply the constraints listed above. Even though we
are only interested in the; (s)’s, the existence of the additional distributions in theslin
program will ensure that the; (s)'s will be globally consistent.

The number of constraints needed for the local probabiigjriutions is much smaller
than the original number of constraints. In summary, the lmsar program will be:
Maximize: V(s) B
Subjectto: Vj=1,...k : Va; € A;, m(s,a;) >0
Vi=1,..,k: Z mi(s,a5) =1

ajeA;
V1i<j<h<k:Ya €A;NA, Z mi(s,a;) = Z (s, @n)
a;eﬂj\ﬂh, a;IEAh,\“Z\j
k
VoeO, V(s) <Y w; Y (s, 0;)m(s,a5) -
j=1 a;eA;

At this point we have eliminated the exponential dependdramy the number of vari-
ables and partially from the number of constraints. The dastof (exponentially many)
constraints can be replaced by a single non-linear constrai

k
V(s)<min > w; Y ¢,(s,a;,0;)m5(s,a5) -
j=1

O~ .
J a;EA;

3E

We now show how this non-linear constraint can be turned éntamber of linear con-
straints which is not exponential i in general. The main idea is to embed a cost network
inside the linear program [2]. In particular, we define am@liation order for the;’s in o

and, for eachy; in turn, we push thenin operator for jusb; as far inside the summation
as possible, keeping only terms that have some dependency@mno dependency on
any of the opponent team actions. We replace this smalierexpression oves; with a
new functionf; (represent by a set of new variables in the linear prograat)dbpends
on the other opponent actions that appear inthis expression. Finally, we introduce a
set of linear constraints for the value ffthat express the fact thdt is the minimum of
the eliminated expression in all cases. We repeat this ®dititin process until all;’s and
therefore allmin operators are eliminated.

More formally, at step of the elimination, lef3; be the set of basis functions that have not
been eliminated up to that point atid be the set of the new functions that have not been
eliminated yet. For simplicity, we assume that the elimiorabrder isoq, 02, ..., 057 (in
practice the elimination order needs to be chosen carefulliylvance since a poor elimi-
nation ordering could have serious adverse effects onexffigi). At the very beginning of
the elimination procesd3; = {¢1, ¢2, ..., ¢} andF; is empty. When eliminating; at
stepi, defineg; C B; U F; to be those functions that contaipin their domain or have no
dependency on any opponent action. We generate a new forfet®) that depends on alll
the opponent actions that appeatirexcludingo;:

fi(0:) 2013&131{ D ow Y $i(s,a5,0)m(s,a) + Y fk(5k)}

PFEE; a;jeA; frL€&

We introduce a new variable in the linear program for eaclsiptesssetting of the domain
o; of the new functiory;(o;). We also introduce a set of constraints for these variables:

Yo, €0, Yo, ¢ fi(0:) Z w; Z ¢j(s,a;,0;)m;(s,a;) Z fx(or)

¢] €& a; G.A fr€&:

These constraints ensure that the new function is the mmirower the possible choices
for o;. Now, we define3; ;1 = B; — &; andF; 1 = F; — & + {f;} and we continue with
the elimination of actiomw; ;. Notice thato; does not appear anywherelfia,; or ;.
Notice also thatfy; will necessarily have an empty domain and it is exactly tHee/af
the statefy; = V (s). Summarizing everything, the reduced linear program is

Maximize: fu B
Subjectto: Vj=1,...k : Va; € A;, m(s,a;) >0

Vi=1,.,k: Z mi(s,a5) =1

ajeA;
Vi<j<h<k:va e AnA, Y msa)= > m(san)
ale A\ Ay, aj, €AR\A;
Vi, Voi, Voi: : fi(0:) ij Z #;(s,a;5,05)m;(s,a;) ka Ok)
b;€E ajed; fuesi

Notice that the exponential dependencyNirand M has been eliminated. The total num-
ber of variables and/or constraints is nhow exponentiallyeshelent only on the number
of players that appear together as a group in any of the basetions or the intermedi-

ate functions and distributions. It should be emphasizatlttiis reduced linear program
solves the same problem as the naive linear program andsytteédsame solution (albeit in
a factored form).

To complete the learning algorithm, the update equationsSéfl must also be modified.
For any samplés, a, 0, r, s’), the naive form would be
1/&<—1/§+¢(s,d,6)($,@,0) fyz /,6'))T7 /b\<—/b\+¢(s,d,6)r .
a’'c A

The actiond’ is the minimizing opponent’s action in computiags’). Unfortunately,
the number of terms in the summation within the first updaigaéign is exponential in

N. However, the vectop(s,a,0) — v ... 17(s',a’")p(s',a’,0") can be computed on a
component-by-component basis avoiding this exponenlm\l/llm. In particular, theg-th
component is:

¢j(s,aj,0 ’yz s a)p;(s',as,0")

a’eA

= ¢ s, a, 0 Z Z 71'(3/7@/)(1)](3 70770)

a’ €A; eA\A-

= ¢J‘(87a75)_ry Z ¢J 8 a;7_l Z 71'(5',&')

a G.A ”.’EA\A_]'
= ¢j(376476)_’7 Z ¢J 37a370 (Slvd;))
a’eA

which can be easily computed without exponential enunarati

A related question is how to findl, the minimizing opponent’s joint action in computing
m(s"). This can be done after the linear program is solved by gdingugh thef;’s in
reverse order (compared to the elimination order) and fanthie choice fop; that imposes
a tight constraint orf; (0;) conditioned on the minimizing choice foy that has been found
so far. The only complication is that the linear program haswentive to maximiz¢; (o;)
unless it contributes to maximizing the final value. Thuspastraint that appears to be
tight may not correspond to the actual minimizing choice.e Boblution to this is to do
a forward pass first (according to the elimination order) kiray the f;(0;)’s that really
come from tight constraints. Then, the backward pass desti@bove will find the true
minimizing choices by using only the markgg0;)’s

The last question is how to sample an actioifrom the global distribution defined by
the smaller distributions. We begin with all actions unamtated and we go through all
7j(s)'s. For eachj, we marginalize out the instantiated actions (if any) frants) to
generate the conditional probability and then we sampl#ljothe actions that remain in
the distribution. We repeat with the neitintil all actions are instantiated. Notice that this
operation can be performed in a distributed manner, that isxecution time only agents
whose actions appear in the samgs) need to communicate to sample actions jointly.
This communication structure is directly derived from threisture of the basis functions.

5 An Example

The algorithm has been implemented and is currently beistgdeon a large flow control
problem with multiple routers and servers. Since expertadaasults are still in progress,
we demonstrate the efficiency gained over exponential eratiog with an example. Con-
sider a problem withV = 5 maximizers and{/ = 4 minimizers. Assume also that each
maximizer or minimizer has actions to choose from. The naive solution would require
solving a linear program wit126 variables and751 constraints for any representation
of the value function. Consider now the following factoredue function:

Q(Sadaa) = ¢1(87a17a2701702)w1 + ¢2(87a17a3701103)w2+
¢3(s,a2,a4,03)ws + ¢4(s,a3,a5,04)ws + ¢5(s,a1,03,04)ws .

These basis functions satisfy the running intersectiopgnmy (there is no cycle of length
longer than 3), so there is no need for additional probgldistributions. Using the elimi-
nation ordeK oy, 03, 01, 02 } for the cost network, the reduced linear program contaits on
121 variables an@15 constraints (we present only the 80 constraints on the \afitlee
state that demonstrate the variable elimination procedunéting the common constrains
for validity and consistency of the local probability dibtrtions):

Maximize: fo Subject to:

Vo4 € O4, Vo3 €03, fa(o3) < Z waga(s,as, as,04)ma(s,as,as) ~+
(az,a5)€A3x Ag

Z w5¢5 (87 ai, 03, 04)71—5 (87 al)

a1 €Ay

Vo3 € O3, Voi € O1, f3(01) < Z wap2(s, a1, as,01,03)m2(s,a1,as) +
(a1,a3)€EA] X A3

Y. wsds(s,az as,03)ms(s,a2,a0) + fa(03)

(az,aq)€A2 XAy

Vo1 €01, Yoy €Oy, fi(o2) < > w1 (s, a1, az,01,02)T1(s,a1,a2) + fa(o1)
(a1,a2)€EA] X Ag

Vo2 € Oz, fa < fi(o2)
6 Conclusion

We have presented a principled approach to the problem wingplarge team Markov
games that builds on recent advances in value function appation for Markov games
and multiagent coordination in reinforcement learningMtiDPs. Our approach permits
a tradeoff between simple architectures with limited reprgational capability and sparse
communication and complex architectures with rich represgens and more complex co-
ordination structure. It is our belief that the algorithnepented in this paper can be used
successfully in real-world, large-scale domains whereatfaglable knowledge about the
underlying structure can be exploited to derive powerfd swfficient factored representa-
tions.

Acknowledgments

This work was supported by NSF grant 0209088. We would akeoth thank Carlos Guestrin for
helpful discussions.

References

[1] R. Dechter. Bucket elimination: A unifying frameworkrfoeasoning. Artificial Intelligence
113(1-2):41-85, 1999.

[2] Carlos Guestrin, Daphne Koller, and Ronald Parr. Mgkiat planning with factored MDPs. In
Proceeding of the 14th Neural Information Processing SystéNIPS-14)pages 1523-1530,
Vancouver, Canada, December 2001.

[3] Carlos Guestrin, Daphne Koller, and Ronald Parr. Sg\factored POMDPs with linear value
functions. InlJCAI-01 workshop on Planning under Uncertainty and Inctetg Information
2001.

[4] Carlos Guestrin, Michail G. Lagoudakis, and Ronald P@uwordinated reinforcement learning.
In Proceedings of the 19th International Conference on Maehirarning (ICML-02) pages
227-234, Sydney, Australia, July 2002.

[5] Michail Lagoudakis and Ronald Parr. Model free leastesgs policy iteration. IfProceedings
of the 14th Neural Information Processing Systems (NIPS{idges 1547-1554, Vancouver,
Canada, December 2001.

[6] Michail Lagoudakis and Ronald Parr. Value function apgmation in zero sum Markov games.
In Proceedings of the 18th Conference on Uncertainty in Aidiflatelligence (UAI 2002)pages
283-292, Edmonton, Canada, 2002.

[7] Michael L. Littman. Markov games as a framework for magjent reinforcement learning. In
Proceedings of the 11th International Conference on Maehiearning (ICML-94)pages 157—
163, San Francisco, CA, 1994. Morgan Kaufmann.

