Coordinated Team Play in the RoboCup Four-Legged League

Georgios Kontes and Michail G. Lagoudakis

Intelligent Systems Laboratory
Department of Electronic and Computer Engineering
Technical University of Crete
Chania, Crete, Hellas (Greece)
Coordinated Team Play in the RoboCup Four-Legged League

Outline

- RoboCup
- Four-Legged League
- Team Coordination
- Implementation
- [Communication]
- Results
Outline

- RoboCup
- Four-Legged League
- Team Coordination
- Implementation
- [Communication]
- Results
RoboCup

- **RoboCup**
 - robotic soccer competition
 - started in 1993/1994 by Hiroaki Kitano in Japan
 - RoboCup federation: www.robocup.org

- **Extensions**
 - RoboRescue: search and rescue missions
 - RoboCup@home, RoboCup Junior, RoboDance

- **Vision**
 - “*By the year 2050, to develop a team of fully autonomous humanoid robots that can win against the human world soccer champions*”
 - 2002 was the first year with a humanoid robot league!
 - "*One small step for a ROBOT, one giant leap for mankind.*"™

ICTAI-07, October 2007, Patras, Greece
Kontes and Lagoudakis, Technical University of Crete
Where do we stand today?
RoboCup Soccer Leagues

- **Simulation League**
 - 11 vs. 11 independent software agents

- **Small-Size Robot League**
 - 5 vs. 5 small robots up to 18 cm in diameter

- **Middle-Size Robot League**
 - 6 vs. 6 robots up to 50 cm in diameter

- **Four-Legged Robot League**
 - 4 vs. 4 Sony AIBO robots

- **Humanoid Robot League**
 - 2 vs. 2 bipedal humanoid robots
Why RoboCup?

- **Research Challenges**
 - can I see clearly? [machine vision]
 - what do I see and where? [object recognition]
 - where am I right now? [localization]
 - what do I do next? [planning]
 - how can I help my teammates? [coordination]
 - how can I move effectively? [motion control]
 - am I sure about what is going on? [uncertainty]
 - do I have to do everything? [integrated solutions]
 - can I take my time? [real-time decision making]

- **Applicability**
 - autonomous teams of robots in dynamic environments
 - search and rescue, planetary exploration, surveillance, ...
RoboCup Participation

<table>
<thead>
<tr>
<th>Event</th>
<th>Place</th>
<th>Teams</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoboCup 2007</td>
<td>Atlanta, USA</td>
<td>321</td>
<td>33</td>
</tr>
<tr>
<td>RoboCup 2006</td>
<td>Bremen, Germany</td>
<td>440</td>
<td>35</td>
</tr>
<tr>
<td>RoboCup 2005</td>
<td>Osaka, Japan</td>
<td>188</td>
<td>29</td>
</tr>
<tr>
<td>RoboCup 2004</td>
<td>Lisbon, Portugal</td>
<td>188</td>
<td>29</td>
</tr>
<tr>
<td>RoboCup 2003</td>
<td>Padua, Italy</td>
<td>188</td>
<td>29</td>
</tr>
<tr>
<td>RoboCup 2002</td>
<td>Fukuoka/Busan, Japan</td>
<td>188</td>
<td>29</td>
</tr>
<tr>
<td>RoboCup 2001</td>
<td>Seattle, USA</td>
<td>141</td>
<td>22</td>
</tr>
<tr>
<td>RoboCup 2000</td>
<td>Melbourne, Australia</td>
<td>110</td>
<td>19</td>
</tr>
<tr>
<td>RoboCup 1999</td>
<td>Stockholm, Sweden</td>
<td>85</td>
<td>23</td>
</tr>
<tr>
<td>RoboCup 1998</td>
<td>Paris, France</td>
<td>63</td>
<td>19</td>
</tr>
<tr>
<td>RoboCup 1997</td>
<td>Nagoya, Japan</td>
<td>38</td>
<td>11</td>
</tr>
</tbody>
</table>
Team Κουρήτες (Kouretes)

- **Team**
 - Kouretes: ancient Cretan warriors
 - founded in January 2006

- **2007 Members**
 - Georgios Kontes
 - Chrysavgi Kontogeorgou
 - Andreas Panakos
 - Alexandros Paraschos
 - Petros Patelis
 - Georgios Pierris
 - Suzanna Volioti
Where the team stands...

- **Pioneer**
 - the first (and only) RoboCup team in Greece

- **Participation**
 - RoboCup 2006 [Technical Challenges]
 - RoboCup German Open 2007 [Four-Legged League]
 - RoboCup 2007 [MS Simulation Challenge]

- **Distinctions**
 - 2nd place [MS Simulation Challenge – RoboCup 2007]
 - 7th place [Four-Legged League – RoboCup German Open 2007]

- **Website**
 - www.intelligence.tuc.gr/kouretes
Coordinated Team Play in the RoboCup Four-Legged League

Outline

- RoboCup
- Four-Legged League
- Team Coordination
- Implementation
- [Communication]
- Results
Four-Legged League

- **Characteristics**
 - standard robotic platform
 - directed visual perception
 - autonomous operation

- **History**
 - first competition was held in 1998
 - last competition will be held in 2008

- **Future**
 - standard platform league
 - Nao humanoid robots (Aldebaran Robotics)
 - first competition to be held in 2008
Coordinated Team Play in the RoboCup Four-Legged League

Sony AIBO ERS-7 Robots

- Features-front
 - Stereo Microphone
 - Illume-Face LED panel
 - Distance Sensor
 - 350K-pixel Image Sensor
 - Edge Detection Sensor
 - Speaker 64 Chords MIDI Sound
 - IEEE 802.11b Wireless LAN
 - Acceleration Sensor Vibration Sensor
 - Wireless on/off Switch Volume Switch
 - Paw Sensors
Sony AIBO ERS-7 Robots

Features:
- Wireless Status LED
- Mode LED
- Pause Button
- 576 MHz 64-bit RISC CPU
- 64 Chords MIDI
- Tactile Head Touch Sensor
- Chin Sensor
- Back LED
- Tactile Back Sensors
Coordinated Team Play in the RoboCup Four-Legged League

Four-Legged League Field

ICTAI-07, October 2007, Patras, Greece
Kontes and Lagoudakis, Technical University of Crete
Coordinated Team Play in the RoboCup Four-Legged League

Four-Legged League
Coordinated Team Play in the RoboCup Four-Legged League

Four-Legged Game Flow

- States:
 - Ready
 - Set
 - Playing
 - Penalized
 - Finished

- State Change by:
 - Message from GameController
 - Pressing switch
 - (ERS-210: back, ERS-7: head)
 - Pressing switch > 3 sec
 - Pressing back switch > 1 sec
 - No button interface

ICTAI-07, October 2007, Patras, Greece
Kontes and Lagoudakis, Technical University of Crete
Kouretes in Action
Coordinated Team Play in the RoboCup Four-Legged League

Four-Legged League Challenges

- **Motion**
 - legged locomotion: 3 degrees of freedom per leg
 - ball handling: grab, dribble, kick with legs, body, head

- **Vision**
 - directed sensing: 3 degrees of freedom on the head
 - “unstable” camera view during locomotion

- **Localization**
 - limited view of landmarks, perceptual aliasing

- **Behavior**
 - behavior planning, team coordination, role assignment
Outline

- RoboCup
- Four-Legged League
- Team Coordination
- Implementation
- [Communication]
- Results
Team Coordination

- **Problem**
 - what should I do next?
 - how can I collaborate with my teammates?
 - how can the team act in a coordinated manner?

- **Why?**
 - soccer is a team game
 - there are four players in a large field
 - unity is power!

- **Current “state-of-the-art”**
 - chase after the ball
 - act independently
Coordinated Team Play in the RoboCup Four-Legged League

The Passing Challenge
Existing Approaches

- **Proximity-based** [GermanTeam, SPQRL, Araibo, ...]
 - estimate the proximity of each player to the ball
 - communicate the estimated distance to all teammates
 - dynamically assign roles according to the estimated distance

- **Auction-based** [Cerberus]
 - compute a numeric bid for a selected available task
 - communicate the bids to all teammates
 - determine the winner(s) and assign roles

- **Shortcomings**
 - short-sighted strategy
 - subject to errors
 - heavy network traffic
Our Approach

- Coordination
 - adopt strategies and tactics from real soccer
 - define clear static roles in each tactic
 - switch tactics according to the current game state

- Benefits
 - exploitation of tested strategies and tactics
 - truly coordinated team play
 - decentralized decision making
 - no confusion in role assignment
 - incorporation of “locker room conventions”
 - expandable and modular coordination module
The 4-4-2 System
RoboCup “4-4-2” System

ICTAI-07, October 2007, Patras, Greece
Kontes and Lagoudakis, Technical University of Crete
Roles and Tactics

- **Roles**
 - goalkeeper
 - defender
 - midfielder
 - attacker

- **Tactics**
 - passive defense
 - pressing defense
 - counter attack
 - passing attack
 - ...

Coordinated Team Play in the RoboCup Four-Legged League

ICTAI-07, October 2007, Patras, Greece
Kontes and Lagoudakis, Technical University of Crete
Coordinated Team Play in the RoboCup Four-Legged League

Tactic #1: Passive Defense
Tactic #2: Pressing Defense
Tactic #3: Counter Attack
Tactic #4: Passing Attack
Dynamic Tactic Selection

Graph showing the dynamic tactics and transitions:
- **Counter Attack**
 - Ball Pass
 - Ball in Opposite Half
 - Won Ball In Opposite Half
 - Ball Lost
- **Pressing Defense**
 - Ball in Opposite Half
 - Won Ball In Opposite Half
 - Won Ball In Own Half
 - Ball Lost
- **Passing Attack**
 - Ball in Opposite Half
 - Won Ball In Own Half
 - Ball Lost
- **Passive Defense**
 - Ball in Own Half
 - Attacker in Opposite Half
 - Won Ball In Opposite Half
 - Ball Lost
Outline

- RoboCup
- Four-Legged League
- Team Coordination
- Implementation
- [Communication]
- Results
Petri Net Plans (PNPs)

- **Petri Nets** [Peterson, 1981; Murata, 1989; ...]
 - graphical language for modeling dynamical systems
 - weighted directed graph with ...
 - nodes: places or transitions
 - edges: paths of execution or conditions
 - tokens: flow of execution

- **Petri Net Plans** [Ziparo and Iocchi, MOCA 2006]
 - extended Petri Nets with unweighted edges
 - action representation in three phases
 - initiation, execution, termination
 - description of various control structures
 - sequences, loops, splits, joins, parallel branches, interrupts, synchronization
 - hierarchical plan decomposition (reusability)
Coordinated Team Play in the RoboCup Four-Legged League

A Simple Petri Net Plan

ICTAI-07, October 2007, Patras, Greece
Kontes and Lagoudakis, Technical University of Crete
Roles as Petri Net Plans

- **Role PNPs**
 - each role in each tactic yields a different PNP
 - 12 Petri Net Plans for 3 roles in each of the 4 tactics
 - 1 Petri Net Plan for the goalkeeper role

- **Hierarchy**
 - actions in the PNPs are primitive actions or other PNPs
 - balance between the complexity of primitive actions and PNPs
 - reusable primitive actions in many plans
Coordinated Team Play in the RoboCup Four-Legged League

Counter Attack Attacker PNP

PLAN NAME: CA_Attacker

MidfielderInPositionClear

startActDribbleForward

startActPassToMidfielder

ex.ActPassToMidfielder

end.ActPassToMidfielder

startActPassSentSignal

ex.ActPassSentSignal

end.ActPassSentSignal

GOAL

NearBall

BallNotGrabbed

BallGrabbed

NearOpponentsGoal

start.Kick

ex.Kick

end.Kick

NotNearBall

start.ActGrabBall

ex.ActGrabBall

end.ActGrabBall

start.ActSwitchTactic

ex.ActSwitchTactic

end.ActSwitchTactic

GOAL

ICTAI-07, October 2007, Patras, Greece Kontes and Lagoudakis, Technical University of Crete
Software Architecture

- **Evolution**
 - German Team 2004
 - SPQR-Legged 2006
 - Kouretes 2007

- **Code**
 - C++ modules
 - PNP parser and executor
 - PsychoJARP

- **Behavior module**
 - input from 4 modules
 - output to 3 modules
Outline

- RoboCup
- Four-Legged League
- Team Coordination
- Implementation
- [Communication]
- Results
Robot Communication

- **Constraints**
 - visual or auditory communication is difficult
 - limited wireless data communication is allowed

- **Messages**
 - necessary to trigger tactic selection
 - a single message over the network at each moment

- **Advantages**
 - less network traffic
 - no need for simultaneous messages
 - no need for synchronized messages
Communication Module

- **Experiment**
 - players 1 and 2 seek the ball, while players 3 and 4 stay idle
 - if ball is seen by player 1, the behaviors above reverse
 - player 1 sends message to player 2, if the ball is seen/lost
 - player 2 sends messages to players 3 and 4 to switch behavior

- **Original module**
 - UDP broadcast protocol

- **Enhanced module**
 - UDP broadcast protocol ...
 - ... with message retransmission
 - new tag <time, original sender>
 - circulation of messages
Coordinated Team Play in the RoboCup Four-Legged League

Communication Tests

![Graphs showing communication tests for Original and Enhanced Modules.](image-url)
Communication Experiment
Outline

- RoboCup
- Four-Legged League
- Team Coordination
- Implementation
- [Communication]
- Results
Pressing Defense (Defender)
Pressing Defense (Midfielder)
Pressing Defense (Attacker)
Pressing Defense (All Players)
Summary of Results

- **Observed Team Play**
 - even distribution on the field
 - no crowding around the ball

- **Tests in RoboCup Games**
 - RoboCup German Open 2007 Competition
 April 2007, Hanover, Germany
 - HiTech Innovator’s Partenariat Demonstration Games
 October 2007, Thessaloniki, Greece

- **Limitations**
 - sensitive to localization and object recognition failures
 - dynamic role assignment is needed in extreme situations
Conclusion

- **Contribution**
 - soccer strategies, tactics, and roles in RoboCup games
 - flexible and extendable design
 - roles as Petri Net Plans, tactic selection as FSM
 - testing on RoboCup team Kouretes

- **Applicability**
 - multi-robot applications: search-and-rescue, exploration, ...

- **Future Work**
 - additional (learned) tactics and dynamic role assignment
 - TCP/IP communication module (access point)
 - transfer to other leagues: simulation and the new SPL
Acknowledgements

- **Technical University of Crete, Chania**
 - university administration
 - financial support for participation
 - RoboCup 2006, German Open 2007, RoboCup 2007

- **Parish of Panagitsa, Kounoupidiana**
 - Rev. Fr. Dimitrios Alexandrakis
 - valuable laboratory space for development and testing
Thank you!