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Abstract. Least-squares methods have been successfully used for pre-
diction problems in the context of reinforcement learning, but little has
been done in extending these methods to control problems. This paper
presents an overview of our research efforts in using least-squares tech-
niques for control. In our early attempts, we considered a direct exten-
sion of the Least-Squares Temporal Difference (LSTD) algorithm in the
spirit of Q-learning. Later, an effort to remedy some limitations of this
algorithm (approximation bias, poor sample utilization) led to the Least-
Squares Policy Iteration (LSPI) algorithm, which is a form of model-free
approximate policy iteration and makes efficient use of training samples
collected in any arbitrary manner. The algorithms are demonstrated on a
variety of learning domains, including algorithm selection, inverted pen-
dulum balancing, bicycle balancing and riding, multiagent learning in
factored domains, and, recently, on two-player zero-sum Markov games
and the game of Tetris.

1 Introduction

Linear least-squares methods have been successfully used for prediction prob-
lems in the context of reinforcement learning. Although these methods lack the
generalization ability of “black box” methods such as neural networks, they are
much easier to implement and debug. It is also easier to understand why a linear
method succeeds or fails, to quantify the importance of each basis feature, and to
engineer these features for better performance. For example, the Least Squares
Temporal Difference learning algorithm (LSTD) [2] makes efficient use of data
and converges faster than conventional temporal difference learning methods.
Unfortunately, little has been done in extending these methods to control

problems. Using LSTD directly as part of a policy iteration algorithm can be
problematic, as was shown by Koller and Parr [6]. This failure is partly due to
the fact that LSTD approximations are biased by the stationary distribution of
the underlying Markov chain. However, even if this problem is solved, the state
value function that LSTD learns is of no use for policy improvement since a
model of the process is not available, in general, for learning control problems.
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This paper is an overview of our research efforts in using least-squares tech-
niques for learning control problems. First, we consider Least-Squares Q-learning
(LSQL), an extension of LSTD that learns a state-action value function (in-
stead of a state value function) in the spirit of Q-learning. Then, we present the
Least-Squares Policy Iteration (LSPI) algorithm which is a form of model-free
approximate policy iteration and resolves some limitations of LSQL (approxi-
mation bias, poor sample utilization). The algorithms were tested and produced
excellent results on a variety of learning domains, including algorithm selec-
tion, inverted pendulum balancing, bicycle balancing and riding, and multiagent
learning in factored domains. Currently, LSPI is being tested on the game of
Tetris and on two-player zero-sum Markov games.

2 MDPs and Reinforcement Learning

We assume that the underlying control problem is a Markov Decision Process
(MDP). An MDP is defined as a 4-tuple (S,A, P,R), where: S = {s1, s2, ..., sn}
is a finite set of states; A = {a1, a2, ..., am} is a finite set of actions; P is a
Markovian state transition model — P (s, a, s′) is the probability of making a
transition to state s′ when taking action a in state s (s a−→ s′); and, R is a
reward (or cost) function — R(s, a, s′) is the reward for the transition s

a−→ s′.
We assume that the MDP has an infinite horizon and that future rewards

are discounted exponentially with a discount factor γ ∈ [0, 1). Assuming that
all policies are proper, i.e. that all episodes eventually terminate, our results
generalize to the undiscounted case as well.
A deterministic policy π for an MDP is a mapping π : S �→ A, where π(s) is

the action the agent takes at state s. The state-action value function Qπ(s, a),
defined over all possible combinations of states and actions, indicates the ex-
pected, discounted, total reward when taking action a in state s and following
policy π thereafter. The exact Q-values for all state-action pairs can be found
by solving the linear system of the Bellman equations :

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)Qπ(s′, π(s′)) or Qπ = R+ γPπQπ ,

where Qπ and R are vectors of size |S||A| and Pπ is a stochastic matrix of
size (|S||A| × |S||A|). R is the expected reward for state-action pairs, R(s, a) =∑

s′ P (s, a, s′)R(s, a, s′), and Pπ describes the probability of transitions from
pairs (s, a) to pairs (s′, π(s′)).

For every MDP, there exists a deterministic optimal policy, π∗, not necessarily
unique, which maximizes the expected, discounted return of every state. The
state-action value function Qπ∗

of an optimal policy is the fixed point of the
non-linear Bellman optimality equations:

Qπ∗
(s, a) = R(s, a) + γmax

a′

∑
s′

P (s, a, s′)Qπ∗
(s′, a′) .

Value Iteration is a method of approximating the Qπ∗
values arbitrarily

closely by iterating the equations above (similar to the Gauss iteration for lin-
ear systems). If Qπ∗

is known, the optimal policy can be constructed simply
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by finding the maximizing action in each state, π∗(s) = maxa Q
π∗
(s, a). Pol-

icy Iteration is another method of discovering an optimal policy by iterating
through a sequence of monotonically improving policies. Each iteration consists
of two phases: Value Determination computes the value function for a policy
π(t) by solving the linear Bellman equations, and Policy Improvement defines
the next policy as π(t+1)(s) = argmaxaQ

π(t)
(s, a). These steps are repeated until

convergence to an optimal policy, often in a surprisingly small number of steps.
In the absence of a model of the MDP, that is, when P and R are unknown,

the decision maker has to learn the optimal policy through interaction with the
environment. Knowledge comes in the form of samples (s, a, r, s′), where s is a
state of the process, a is the action taken in s, r is the reward received, and s′ is
the resulting state. Samples can be collected from actual (sequential) episodes
or from queries to a generative model of the MDP. In the extreme case, they can
be experiences of other agents on the same MDP. The class of problems that fall
under this framework is known as Reinforcement Learning (RL) [5,15,1].
Q-learning [17] is a popular algorithm that stochastically approximates Qπ∗

.
It starts with any arbitrary initial guess Q̂(0) for for the values of Qπ∗

. For each
sample (s, a, r, s′) considered, Q-learning makes the update

Q̂(t+1)(s, a) = (1− α)Q̂(t)(s, a) + α
[
r +max

a′

{
Q̂(t)(s′, a′)

}]
,

where α ∈ (0, 1] is the learning rate. Under certain conditions (e.g., infinitely
many samples for each state-action pair, appropriately decreasing learning rate),
Q̂ is guaranteed to converge to Qπ∗

.

3 Least-Squares Methods in Reinforcement Learning

3.1 Least-Squares Approximation of Q Functions

Q functions can be stored in tables of size |S||A| for small MDPs. This is,
however, impractical for large state and action spaces. In such cases, it is common
to approximate Qπ with a parametric function approximator by setting the
parameters to a set of values that maximizes the accuracy of the approximator.
A common class of approximators, known as linear architectures, approximate a
value function as a linear combination of k basis functions (features):

Q̂π(s, a, w) =
k∑

i=1

φi(s, a)wi = φ(s, a)ᵀw ,

where w is a set of weights (parameters), and, in general, k << |S||A|. Let Φ
be the (|S||A|× k) matrix, where row i is the vector φi(s, a)ᵀ. We are interested
in finding a set of weights wπ that yields a fixed point in value function space,
that is, a value function Q̂π = Φwπ that is invariant under one step of value
determination followed by orthogonal projection to the space spanned by the
basis functions. In particular, under the assumption that the columns of Φ are
independent, we require that

Φ(ΦᵀΦ)−1Φᵀ(R+ γPπΦwπ) = Φwπ =⇒ Φᵀ(Φ− γPπΦ)wπ = ΦᵀR =⇒ Awπ = b ,
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where A = Φᵀ(Φ − γPπΦ) is a square matrix of size k × k, and b = ΦᵀR.
The solution of the system, wπ = A−1b, yields the desired set of weights. We
note that this is also the standard fixed point approximation method used in the
LSTD algorithm with the exception that the problem here is formulated in terms
of Q values instead of state values. For any Pπ, a unique solution is guaranteed
to exist for all but finitely many values of γ [6].

3.2 LSQ: Learning the State-Action Value Function

When the model (R,Pπ) of the underlying MDP is not available,A and b cannot
be determined a priori, but they can be approximated using samples. Recall that
Φ, PπΦ, and R are of the form

Φ=




φ(s1, a1)ᵀ
. . .

φ(s, a)ᵀ
. . .

φ(s|S|, a|A|)
ᵀ




Pπ
Φ=




∑

s′
P (s1, a1, s

′)φ(s
′
, π(s

′))ᵀ

. . .∑

s′
P (s, a, s

′)φ(s
′
, π(s

′))ᵀ

. . .∑

s′
P (s|S|, a|A|, s

′)φ(s
′
, π(s

′))ᵀ




R=




∑

s′
P (s1, a1, s

′)R(s1, a1, s
′)

. . .∑

s′
P (s, a, s

′)R(s, a, s
′)

. . .∑

s′
P (s|S|, a|A|, s

′)R(s|S|, a|A|, s
′)




Given a set of samples, D = {(sdi , adi , rdi , s
′
di
) | i = 1, 2, . . . , L}, we can con-

struct approximate versions of Φ, PπΦ, and R as follows :

Φ̂ =




φ(sd1 , ad1)
ᵀ

. . .
φ(sdi , adi)

ᵀ

. . .
φ(sdL , adL)

ᵀ


 P̂πΦ =




φ(s′
d1 , π

(
s′

d1)
)ᵀ

. . .
φ(s′

di
, π

(
s′

di
)
)ᵀ

. . .
φ(s′

dL
, π

(
s′

dL
)
)ᵀ


 R̂ =




rd1

. . .
rdi

. . .
rdL




These approximations can be thought of as first sampling rows from Φ and
then, conditioned on these samples, as sampling terms from the summations
in the corresponding rows of PπΦ and R. The sampling distribution from the
summations is governed by the underlying dynamics (P (s, a, s′)) of the process
as the samples in D are taken directly from the MDP. Therefore, A and b can
be approximated as

Â = Φ̂
ᵀ
(Φ̂− γP̂πΦ) and b̂ = Φ̂

ᵀR̂ .

These equations lead to an incremental update rule for Â and b̂. Assume that
initially Â = 0 and b̂ = 0. For a fixed policy π, a sample (s, a, r, s′) contributes
to the approximation according to the following update equation :

Â← Â+ φ(s, a)
(
φ(s, a)− γφ(s′, π(s′))

)ᵀ
and b̂← b̂+ φ(s, a)r .

With uniformly distributed samples over pairs of states and actions (s, a), the
approximations Â and b̂ are consistent approximations of the true A and b
(scaled by a constant) and the solution ŵπ will converge to the true solution wπ.

We call this algorithm LSQ [7] due to its similarity to LSTD. LSQ learns the
state-action value function of a fixed policy. However, unlike LSTD, it computes
Q functions and does not expect the data to come from any particular Markov
chain. LSQ can use the same set of samples to compute Q values for any policy.
The policy merely determines which φ(s′, π(s′)) is added to Â for each sample.
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3.3 LSQL: Least-Squares Q-Learning

In our early work [8,9] we proposed a direct extension of LSQ to control problems
in the spirit of Q-learning. Recall that Q-learning uses the current approximation
to derive an estimate of the (maximum) value of the resulting state. Applying
the same idea to modify LSQ, we arrived at the following update equations for
any sample (s, a, r, s′):

Â(t+1) ← µÂ(t) + φ(s, a)φ(s, a)ᵀ , b̂(t+1) ← µb̂(t) + φ(s, a)
(
r + γmax

a′ φ(s′, a′)ᵀw(t)
)
.

The weight vector w(t) at each step t is the solution of the system Â(t)w(t) =
b̂(t). Essentially, the nonlinear term introduced by the maximization operator is
explicitly computed using the current estimates and becomes part of the right
hand side of the system. Unlike Q-learning, the effect of a sample does not fade
out because of the absence of a learning rate. The parameter µ ∈ (0, 1] is an
exponential windowing factor and is used to discount the oldest, and thus most
inaccurate, entries in Â and b̂.

Although LSQL is a reasonable and intuitive extension, it has some limita-
tions. The use of the current estimates introduces significant bias in the approx-
imation, especially in the early steps when the estimates are inaccurate. Also,
samples are not used so efficiently since they are discarded after one use. Even if
they were stored and reused, numerous passes are required before the inaccurate
information entered early in the matrices is replaced by more accurate estimates.

3.4 LSPI: Least-Squares Policy Iteration

LSQ does not suffer from the problems of LSQL because its equations are strictly
linear, however it can learn value functions for fixed policies only. Thus, LSQ
can be integrated into an approximate policy iteration procedure (performing
the value determination step) for solving learning control problems . This is the
key insight behind the Least-Squares Policy Iteration (LSPI) algorithm [7]. Note
that this is not the same as using LSTD in a policy iteration algorithm. LSQ
approximations are not biased by the stationary distribution, since samples can
be collected arbitrarily and their distribution can be potentially controlled. More
importantly, the policy improvement step of the policy iteration can be realized
automatically without ever explicitly representing the policy and without any
sort of model. Since LSQ computes Q functions, the improved policy π(t+1) is
simply the greedy policy over the Q function learned in the previous iteration:

π(t+1)(s) = argmax
a

Q̂π(t)
(s, a) = argmax

a
φ(s, a)ᵀwπ(t)

.

In this sense the improved (greedy) policy is represented implicitly by a finite set
of parameters (wπ(t)

) and can be determined on demand for any given state as
shown above. To close the loop, we require that LSQ performs this maximization
to find π(t)(s′) for each s′ in the data set when constructing the Â matrix for a
policy π(t). The LSPI algorithm is summarized in Figure 1.
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LSPI (k, φ, γ, ε, π0, D0)

// k : Number of basis functions
// φ : Basis functions
// γ : Discount factor
// ε : Stopping criterion
// π0 : Initial policy, given as w0 (default: w0 = 0)
// D0 : Initial set of training samples, possibly empty

D = D0
π′ = π0 // In essence, w′ = w0

repeat
Update D (optional) // Add/remove samples, or leave unchanged
π = π′ // w = w′

π′ = LSQ (D, k, φ, γ, π) // w′ = LSQ (D, k, φ, γ, w)
until (π ≈ π′) // that is, (||w − w′|| < ε)

return π // return w

Fig. 1. The LSPI algorithm.

4 Experimental Results

4.1 Algorithm Selection

Algorithm selection [13] is the following decision problem: given a set of algo-
rithms for a problem, dynamically choose the best algorithm for any instance
of the problem, i.e. the algorithm that minimizes the expected total execution
time on a target machine. The problem becomes more challenging with recursive
algorithms in the set. A sub-instance generated during a recursive call gives rise
to a new algorithm selection problem; any algorithm in the set can be chosen to
solve it. We call this sequential decision problem recursive algorithm selection [8],
since the entire sequence (or tree) of decisions has to be optimized. Uncertainty
in algorithm selection stems from the input distribution, the inner workings of
the algorithms (e.g. randomized algorithms), and the hardware characteristics.
We can formulate the problem as a kind of MDP. The state of the process

consists of a set of instance features, such as problem size. The actions are the
different algorithms we can choose from. Non-recursive algorithms are terminal
in that they solve the instance completely (terminal state). Recursive algorithms
create subinstances and therefore cause (non-deterministic) transitions to other
states. The immediate cost of a decision is the real time taken for executing
the selected algorithm on the current instance, excluding time taken in recursive
calls. Thus, the total (undiscounted) cost during an episode is the total time
taken to solve that particular instance. The goal is to find a policy that minimizes
the expected total cost/time. This process differs from a standard MDP in that
it allows one-to-many state transitions (multiple recursive calls at one level).
We used LSQL to learn good policies for the following problems: order-

statistic selection [8], sorting [8], and branching in satisfiability [9]. For sorting,
we combined InsertionSort and QuickSort using the array size n as the only state
feature. The linear approximator included a block of three terms (n, n log2 n, and
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Fig. 2. Results on: (a) algorithm selection for sorting; (b) the inverted pendulum.

n2) repeated for each action, thus a total of six basis functions. In effect, each
action had its own separate set of weights over the same set of basis functions.
After training, the learned policy was tested against the individual algorithms
and against an empirical cut-off point algorithm. Averaged results are shown in
Figure 2 (a). For sorting, in particular, it is easy to derive the transition model
and use a model-based approach to obtain even better selection policies [10].
For satisfiability, we considered the problem of selecting among seven heuris-

tic branching rules at each branching point of a DPLL procedure for the SAT
or #SAT problem [9]. The state was the number of free variables n at the cur-
rent node and the immediate cost was the number of nodes expanded between
the current and the next branching nodes. With this definition, the total undis-
counted cost of a complete episode is the total number of nodes expanded during
the DPLL run. Since the Q function was expected to be exponential in n, we
used a polynomial in n of degree 7 (with no constant term) to approximate the
logarithm of the Q function separately for each action (49 basis functions total).
We used LSQL to learn selection policies on different classes of #SAT problems.
The learned policies performed as well as the best of the individual heuristics,
and in one class of problems significantly better. In all cases, the learned policies
were significantly better than the purely randomized policy.

4.2 Inverted Pendulum

The inverted pendulum problem is to balance a pendulum of unknown length
and mass at the upright position. The state space is continuous and consists of
the vertical angle and the angular velocity of the pendulum. The (nonlinear)
dynamics of the system are described in [16]. There are three force actions,
A = {−50, 0,+50}, but the actual input u to the system is noisy; u = a+ 10n,
where a ∈ A and n is a Gaussian noise term. The simulation step is 0.1 seconds.
The agent receives zero reward as long as the angle of the pendulum does not
exceed π/2 in absolute value. An angle greater than π/2 signals the end of the
episode and a penalty of −1. The discount factor of the process is 0.9.
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We used a set of 30 basis functions (10 for each action) to approximate
the value function. These 10 basis functions include a constant term and 9
radial basis functions (Gaussians with σ2 = 1) arranged in a 3 × 3 grid
({−π/4, 0, +π/4}× {−1, 0, +1}) over the 2-dimensional state space. Training
samples were collected from “random episodes”, i.e., starting in a random state
close to the upright position and following a purely random policy. Figure 2 (b)
shows the performance of controllers learned by LSPI. Each (successful) episode
was allowed to run for a maximum of 3000 steps (5 minutes) of continuous
balancing. LSPI returned very good policies given only a few hundred training
episodes.

4.3 Bicycle Balancing and Riding

The goal in the bicycle problem [12] is to learn to balance and ride a bicy-
cle to a target position located 1 km away from the starting location. Initially,
the bicycle’s orientation is at an angle of 90◦ to the goal. The state descrip-
tion is a six-dimensional real-valued vector (θ, θ̇, ω, ω̇, ω̈, ψ), where θ is the angle
of the handlebar, ω is the vertical angle of the bicycle, and ψ is the angle of
the bicycle to the goal. The actions are the torque τ applied to the handlebar
(discretized to {−2, 0,+2}) and the displacement of the rider υ (discretized to
{−0.02, 0,+0.02}). In our experiments, actions are restricted to be either τ or
υ (or nothing) giving a total of 5 actions. A shaping reward signal was used to
learn both tasks at once. The agent receives a reward equal to the net change in
the square of the vertical angle and a reward equal to 1% of the net change (in
meters) in the distance to the goal. These two rewards are combined additively
at each time step. The discount factor is 0.8. The noise in the system is a uni-
formly distributed term in [−0.02,+0.02] added to the displacement component
of the action. The dynamics of the bicycle are based on the model described in
[12] and the time step of the simulation is set to 0.01 seconds.
The state-action value function Q(s, a) for a fixed action a is approximated

by a linear combination of 20 basis functions:

( 1, ω, ω̇, ω2, ω̇2, ωω̇, θ, θ̇, θ2, θ̇2, θθ̇, ωθ, ωθ2, ω2θ, ψ, ψ2, ψθ, ψ̄, ψ̄2, ψ̄θ ) ,

where ψ̄ = π − ψ for ψ > 0 and ψ̄ = −π − ψ for ψ < 0. Note that the
state variable ω̈ is completely ignored. This block of basis functions is repeated
for each of the 5 actions, giving a total of 100 basis functions and weights.
Training data were collected by initializing the bicycle to a random state around
the equilibrium position and running small episodes of 20 steps each using a
purely random policy. LSPI was applied on training sets of different sizes and
the average performance is shown in Figure 3 (a). Successful policies usually
reached the goal in approximately 1 km total, near optimal performance.

4.4 Multiagent Learning: The SysAdmin Problem

In multiagent domains, multiple agents must coordinate their actions so as to
maximize their joint utility. Such systems can be viewed as MDPs where the
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Fig. 3. Results on: (a) bicycle balancing and riding; (b) the SysAdmin problem.

“action” is the joint action and the reward is the total reward for all of the agents.
Although, the action space can be quite large, Collaborative action selection [3] is
a method that allows multiple agents to efficiently determine the jointly optimal
action with respect to an (approximate) factored value function using a simple
message passing scheme. This joint value function is a linear combination of local
value functions, each of which relates only to some parts of the system controlled
by a small number of agents. Extending LSPI to multiagent learning in such
domains is straightforward. LSPI can learn the coefficients for the factored value
function and the improved policy will be defined implicitly by the learned Q-
function. However, instead of enumerating the exponentially many actions to
find the maximizing action, the collaborative action selection mechanism is used
to determine efficiently the policy at any given state.

The SysAdmin problem [3] consists of a network of n machines connected
in a chain, ring, star, ring-of-rings, or star-and-ring topology. The state of each
machine is described by its status (good, faulty, dead) and its load (idle, loaded,
process successful). Jobs can be executed on good or faulty machines (job ar-
rivals and terminations are stochastic), but a faulty machine will take longer to
terminate. A dead machine is not able to execute jobs and remains dead until it is
rebooted. Each machine receives a reward of +1 for each job completed success-
fully. Machines fail stochastically and they are also influenced by their neighbors.
Each machine is also associated with a rebooting agent. Rebooting a machine
makes its status good independently of the current status, but any running job is
lost. These agents have to coordinate their actions to maximize the total reward
for the system. The discount factor is 0.95. The SysAdmin problem has been
studied in [3], where the model of the process is assumed to be available as a
factored MDP. The state value function is approximated as a linear combination
of indicator basis functions, and the coefficients are computed using a Linear
Programming (LP) approach. The derived policies are close to the theoretical
optimal and significantly better compared to policies learned by the Distributed
Reward (DR) and Distributed Value Function (DVF) algorithms [14].



258 M.G. Lagoudakis, R. Parr, and M.L. Littman

In our work, we assume that no model is available and we applied LSPI to
learn rebooting policies [4]. To make a fair comparison, we used comparable sets
of basis functions. For n machines in the network, we experimentally found that
about 600n samples are sufficient for LSPI to learn a good policy. The samples
were collected by a purely random policy. Figure 3 (b) shows the results obtained
by LSPI on the star topology compared to the results of LP, DR, and DVF as
reported in [3]. In both cases, LSPI learns very good policies comparable to the
LP approach, but without any use of the model. It is worth noting that the
number of samples used in each case grows linearly in the number of agents,
whereas the joint state-action space grows exponentially.

4.5 Two-Player Zero-Sum Markov Games

A two-player zero-sum Markov game is defined by a set of states S and two sets
of actions, A and O, one for each player. In each state, the two players take
actions simultaneously, they receive a reward that depends on the current state
and their actions, and the game makes a stochastic transition to a new state.
The two players have diametrically opposed goals; one is trying to maximize the
total cumulative reward, whereas the other is trying to minimize it. Optimality
can be defined independently of the opponent in the minimax sense: maximize
your total reward in the worst case. Unlike MDPs, the minimax-optimal policy
for a Markov game need not be deterministic. Littman [11] has studied Markov
games as a framework for multiagent RL by extending tabular Q-learning to a
variant called minimax-Q.
We tried to apply LSPI to the same kind of problems. Given an approximate

value function Q̂(s, a, o), the implied policy at any given state s is a probability
distribution πs over actions defined as

πs = arg max
πs∈PD(A)

min
o∈O

∑
a∈A

πs(a)Q̂(s, a, o) ,

where a is the action of our agent and o is the opponent’s action. πs can be found
by solving a linear program [11]. Given that the policy is stochastic, the update
equations of LSQ within LSPI have to be modified so that the distribution over
possible next actions is taken into account:

Â← Â+ φ(s, a, o)
(
φ(s, a, o)− γ

∑
a′∈A

πs′(a′)φ(s′, a′, o′)
)ᵀ

, b̂← b̂+ φ(s, a, o)r ,

for any sample (s, a, o, r, s′). The action o′ is the minimizing opponent’s action
in computing πs′ . In our preliminary experiments on the simplified one-on-one
soccer game [11], LSPI was able to learn very good policies using only about
10, 000 samples. This is a fraction of the 1, 000, 000 samples required by tabular
minimax-Q. Further, with the use of basis functions that capture important
features of the game (e.g., scaled distances to the goals and the opponent) for
approximating the value function, we have been able to scale to grid sizes much
bigger than the original (5× 4) grid. We are currently investigating team-based
Markov games and the use of coordinated action selection in conjunction with
LSPI for efficient multiagent learning in team-based competitive domains.
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4.6 Tetris

Tetris is a popular tiling video game. Although the model of the game is rather
simplistic and known in advance, the state-action space is so big (≈ 1061 states
and ≈ 40 actions) that one has to rely on approximation and learning techniques
to find good policies. We used 10 basis functions over (s, a) pairs to capture
features of state s and the one-step effects of playing action a in s: the maximum
height in the current board, the total number of “holes”, the sum of absolute
height differences between adjacent columns, the mean height, and the change of
these quantities in the next step, plus the change in score and a constant term.
That results in a single set of 10 weights for all actions.
In our preliminary results, policies learned by LSPI using about 10, 000 sam-

ples achieve average score between 1, 000 and 3, 000 points per game. The train-
ing samples were collected using a hand-crafted policy that scores about 600
points per game (the random policy rarely scores any point). Knowledge about
the model was incorporated in LSPI to improve the approximation: for each
sample, instead of considering just the sampled next state in the update equa-
tion, we considered a sum over all possible next states appropriatelly weighted
according to the transition model.
Our results compare favorably with the results of λ−policy iteration on Tetris

[1], but there are significant differences in the two approaches. λ−policy iteration
collects new samples in each iteration and learns the state value function; it uses
the model for greedy action selection over the learved function, and the iteration
does not finally converge. On the contrary, LSPI collects samples only once at
the very beginning and learns the state-action value function; it uses the model
only to improve the approximation, and converges in about 10 iterations. In both
cases, the learned players exhibit big variance in performance.

5 Discussion and Conclusion

We presented an overview of our research efforts towards using least-squares
methods in reinforcement learning control problems. The key advantages of least-
squares methods is the efficient use of samples and the simplicity of the imple-
mentation. In all the domains we tested, our algorithms were able to learn very
good policies using only a small number of samples compared to conventional
learning approaches, such as Q-learning. Moreover, the algorithms required little
or no modification in each case. There are also many exciting avenues to explore
further: How are the basis functions chosen? What is the effect of the distri-
bution of the training samples? Can we use projection reweighting methods to
make LSPI amenable to even “bad” data sets? These are some of the many open
questions on our research agenda. In any case, we believe that algorithms like
LSPI can easily be good first-choice candidates for many reinforcement learning
control problems.
We would like to thank C. Guestrin, D. Koller, and U. Lerner for helpful

discussions. The first author would also like to thank the Lilian-Boudouri Foun-
dation in Greece for partial financial support.
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