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Abstract  

After the commercial success of the v ideo game ñDota ò, there has been 

increasing attention given to the Multiplayer online battle arena (MOBA) 

subgenre of Real Time Strategy (RTS) games . The creation of agents able 

to play autonomously within such  games is  sometimes  limited by the 

absence of a public application programming  interface (API) . This applies 

to the popular game ñLeague of Legendsò, which was greatly  inspired by 

Dota. The few computer -assisted players provided by the designers of this 

game  range from beginner to intermediate, but have direct access to the 

private API inside the game. This thesis introduces a novel way to handle 

auto nomous agent creation  in such games , where access to the game 

state is limited  to the information displayed on the userôs screen. The 

proposed methods come close to what a human player does, since  there  is 

a perception phase, which relies  mainly on visual  analysis , and a decision 

phase, whose outcome  affect s the game  through emulation of the 

keyboard and mouse input devices.  To achieve  this we use screen capture  

on the gameôs interface and computer vision  algorithms to detect 

important information. Then , we  use artificial intelligence algorithms to 

encode behaviors  for the game character we control . Realizing  this 

perception -decision -action cycle  is very demanding in terms of  

computational resources , however our optimized implementation manages 

to meet the r eal - time requirements of the game. Our autonomous agent 

for the ñLeague of Legendsò game is able to achieve intermediate level of 

play and is quite competent against the designer -provided agents and also 

against beginner human players.  
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Chapter  1. Introduction  

 

1.1 Motivation  
 

League of Legends [1]  is a  video game , where players assume the 

roles of champions , which they fully control against other human or 

computer controlled champions. Figure 1 shows a typical screenshot of 

the game. The environment provides  limited resources for which 

players contest to get a gold advantage. It is thus categorized as a 

multiplayer online battle arena (MOBA) video game, which is a 

subgenre of the real time strategy genre  [2] . Our goal in this thesis is 

to create an autonomous agent for the League of Legends game.  

Creating  an agent for MOBA games is difficult because of the degree of 

freedom in the player actions. It is widely accepted that a ran dom 

agent , who selects actions randomly, in a MOBA game cannot even 

reach mediocre level of play . In games like chess, the available actions 

are discrete and limited  in number , making any choice by the agent 

seem humanlike, but unsophisticated. In MOBA gam es, the decision for 

placement along with the combination of actions available to our 

champion in  real time make s it impossible to make naµve choices seem 

intentional. Thus , the random agent is almost immediately classified as 

naµve and inefficient.  

Most o f the agents made by artificial intelligence (AI) enthusiasts rely 

on acquiring information about the game state through interfaces that 

can observe game variables in the memory. However, the information 

stored in memory is  not  readily available to human p layers and some 

of it is  not  accessible even through the gameôs interface. The 

implementation of AI algorithms is easier and not too costly, when the 

agent has to just act. But making an agent that has to  perceive first 

and then act, means we get closer to  the real goal of AI.  This is the 

case with the League of Legends game, which does not provide an 

open interface.  

Creating an agent who  detects the environment through a  screenshot 

of the entire game interface is the other part of the implementation 

which faces an entire repertoire of problems on its own. League of 

Legends is a 3d game with 2d interface elements. This makes it easier 

to abstract the information, since most of i t lies in two dimensions and 

the process of abstraction can be quite reliable. In formation which  is 
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natively 3d is hard to acquire and even mapping the 2d abstract map 

state that  we have already acquired from the game  minimap, into the 

3d space o f the main view is challenging. Champions in proximity 

cannot be reliably  detected in two d imensions and we have to rely on 

their 3d models to know who they are. Rotations and animations 

increase the complexity of the task.  Finally, when we get contradictory 

information we have to find ways to resolve  the dispute.  

 

Figure 1. ! ǎŎŜŜƴǎƘƻǘ ŦƻǊ ǘƘŜ ά[ŜŀƎǳŜ ƻŦ [ŜƎŜƴŘǎέ ƎŀƳŜ 

For example, there are  Bogart problems, which contain two sets o f 

images  and there is  a distinction to be made between the two sets . 

The first set could contain small objects , while  the second could 

contai n large objects. Problem solving satisfaction aside, they also 

provided an unsolved problem for artificial intelligence. There had been 

many efforts to automate Bogart problem solving, but up to a point 

they relied on humans to abstract the infor mation fro m the images, 

before  giving them to a computer. The computer would decide what 

information was missing from one set , but was present in another. 

Many considered this intervention cheating , since the users that 

provided the information about the images were  thought to put in 

more information in the system than they got out, making solving the 

problems trivial. Then, Harris Foundal is made Phaeaco for his PhD  

thesis, and provided a way to solve the problems by just using the sets 

of images instead  [8 ] . This work was a great inspiration , because it is 

in the true heart of AI . Vision is much more complex than any other 

sense and the primary method for getting information about the world. 

Adding perception through vis ion to the agent before he makes 
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decisions was an important step towards realizing a complete entity 

that could be considered autonomous.  

We wish  to implement an a gent that can play the game of League of 

Legends. To do so, he is provided wi th visual stimul i from the game  

and tries to abstract visual cues from the acquired information.  He 

then processes that information to derive actions which are deemed to 

bring the most utility , which are fed to the game using the keyboard 

and the mouse . By using such a bi -directional  interface that is able to 

snapshot the entire game screen and simul ate user input, we create a 

tru ly autonomous agent tha t behaves like a human. To this end , the 

agent has to process the information of the minimap, which provides 

the locations  and existence of game entities, as wel l as the view, which 

is a close -up on the three -dimensional structure of the game.  If our 

agent manages to utilize the tools given to produce more income  than 

his opponents , he will be able to get the advantage in  the  game 

consistently.  The main objective of the game, destroying the enemy 

nexus, requires a lot of mini objectives to be completed first. After our 

agent destroys the enemy nexus, the central building inside the enemy 

camp, he wins the game.  

 

1.2 Thesis Contribution  

 

The way we tackle our  problem involves the following  steps.  First , we 

analyze the colors we see in the hsv  color space. We use massive 

parallelization to detect important lines in the view, and after removing 

the unnecessary ones, we get to dete ct health bars, getting an 

indication over where entities are in our view. Then we go to the map, 

and use hue indications on the locations of buildings to see if they are 

still enabled. We use the Hough transform method for detecting circles 

with a specifi c radius to see where characters lie in our map. Then we 

use hue histogram vectors to identify the char acters. We go back to 

the view and  we use hue histogram vectors to compare the champion 

in our view to expected champion values to completely identify th em, 

and after that we look at how much health and mana (used for 

actions ) they have. We get these values by letting the character walk 

over terrain in different orientations and getting mean va lues . We use 

a multilayered neural network on the images of dig its from our current 

gold image to update our available gold. We use an imported library 

for understanding what other players are trying to communicate to us 

in the chat box. Finally, we make a bag of words system that 

processes the language.  
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After we hav e our game state, we compare the state we got from the 

map to the one we got from the view. We make appropriate  changes 

to reflect the fact that the view is a bit more reliable than the map, but 

the map can still give information about things just outside our view.  

In the action part of the agent, we form interest points that will guide 

the character to the most interesting place s on the map. A behavioral 

system based on a vector of ñfeelingsò, like ñgreedyò when minions are 

nearby  or ñscaredò when enemy turrets are in close proximity to our 

character , guides which algorithms we should run in the current action 

phase. The A* algorithm is used when the agent is ñscaredò. For 

skillshots, which are skills that need to be directed in certain lines, we 

use a meth od that minimizes the distance of minions from some  line, 

and then we use that line to shoot as many minions as possible. 

Finally, we make a complicated scripted system of responses for 

combinations of ñfeelingsò that will guide the champion to move, 

attac k, use skills, explore , etc. All these responses are based on a 

coordination -of -actions system that abstracts much functionality and 

maps them directly to m ouse and keyboard actions. The J ava robot 

library provides a way for these actions to be emulated im mediately 

inside the game . 

The original goal was two fold :  

 

1. Create an agent better than the random agent in a 1 vs.  0 game.  

2. Create  an agent that can compete  against the in -game beginner  bot 

agents that have  access to the private game API.  

The solutio n to  the first goal  was essentially trivial. As soon as the 

agent had a basic repertoire of perceptions about the locations of 

objects, he could easily move around the map and us e a ctions that 

offer  utility. The solution to the second goal  was much harder.  Since 

the automated players we play ed against are at almost beginner 

human level of play,  once  we were able to beat them , it showed that 

our agent did not  make naµve mistakes and could be confused for an 

inexperienced human.  However , even small mistakes c ould lead to 

very bad performance , so rooting out a lot of sources of misplay was 

essential. In conclusion, our efforts focus ed more  on making an agent 

that does not  make bad decisions than an agent that makes really 

good ones.  This is why we omitted pure learning approaches  and opted 

for more standard AI approaches  that could handle  a small repertoire 

of common  situations.  Our working hypothesis was that since these 

situations are very frequent , exceptional knowledge of specific 

circumstances and invent ion  of solutions to those was not  required.  



15  
 

Finally , we were able to test our agent in a fully automated 

environment. We managed to win reliably against  the beginner - level 

agents implemented already in the game.  Interestingly, to a human 

observer the gameplay  of our agent can be hardly distinguished from 

that of an average human player.    

1.3 Thesis Overview  

 

The rest of the thesis is organized as follows. First ly, in Chapter 2 , we 

cover the background necessary for  understanding the employed 

algorithms. Next, in Chapter 3 , we introduce the problem, showing 

many parts of the game and providing evidence for the difficulty of the 

problemôs multidimensional action space, as well as the probable 

complications of the visual extraction methods. After that we introduce 

related work in the field. We notice that there i s little work done in the 

screen capture / action types of agents in virtual environments. In 

Chapter 4 , we describe in detail our approach to the problem, both in 

regards to visual process ing as well as decision making. Then, in 

Chapter 5 , we  provide a comparison of the agent  to both the beginne r-

level automated  agents implemented inside the game and the beginner 

human players.  Finally, Chapter 6  concludes our work and lists ideas 

for future extensions.  
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Chapter  2. Background  

 

2.1 Hsv Color Space 

 

The hsv  color space is one of the two most common representation s of 

cylindrical co ordinates in color coding . It i s used in computer vision 

because of its closeness to human perception of color. Instead of 

describing the three components of color as amounts of red, green , 

and blue  ( rgb ), as shown in Figure 2 , we pro vide three different 

parameters:  hue , which includes all the pure colors wi thout any kind of 

tint or shade;  saturation , which determines how vibrant the color 

looks ;  and , value , which corresponds t o how far from black the final 

color is [ 9]  (see Figure 3 ) .    

 

 

Figure 2. Rgb color space [14] 

 

Figure 3. Hsv color space [15] 
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2.2 Hough Transform  

 

The Hough transform algorithm is an image perception algorithm for 

the detection of specific features in an image, like lines or circles. 

Normally, the original algorithm creates an accumulator space, with 

the parameters of the shapes determining the dimensions of this 

space. Every point that is detected increases the value of all poss ible 

shapes that can produce it in the space [10 ][ 11 ] .  

Points that are local maxima in our accumulator space represent 

shapes with parameters determined by the location of the points. We 

use a disk and circle  detection algorithm without using size as a 

parameter, only location. Thus, we can determine the position of large 

circles or small disks of a certain color.  

2.3 Histograms  

 

A histogram is a representation of the distribution of some data. Color 

histogram s are such representations where the data are the color 

values of an image [10 ] . We can make a histogram for every 

component in the hsv model and acquire information about the 

distributions of hue, saturation and value inside an image, as shown in 

Figure 4. To do this, we simply recognize the hsv components of each 

pixel and count  all the pixels that have the same hsv component. We 

first decide the ranges where the component value of a pixel must fall 

in to get  accounted for by the counting process. Then each rangeôs 

count  is shown in the histogram. The hsv histogram that results from 

this process contains very important information about the image and 

can be used for classification.  

 

Figure 4. Hsv histogram (showing the Hue and Value components) [17] 
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2.4 A* Algorithm  
 

One of the mos t successful search  algorithms for pathfinding is the A* 

algorithm  [ 5][ 6] . It uses a best - first search strategy to find a path 

from the starting point to the end point. It is applied on a system of 

interconnec ted nodes , namely a graph . If we can traverse between all 

the connected nodes, with a movement cost provided by the weight on 

those nodes, we can apply the algorithm to find the shortest path 

between any two nodes in a very accurate and efficient way.  

The  algorithm maintains a set of open nodes, the set of nodes we have  

not  evaluated yet, which initially contains only the starting node. For 

every neighbor node of our currently evaluated node, we calculate the 

cost to reach it. It is equal to the sum of the  past path -cost function 

g(x) and the expected future path -cost function h(x).  Function h (x) 

heuristically estimates the remaining cost and has to be an admissible 

heuristic, meaning it should never overestimate the distance between 

the current node and th e target node.  After we find the node that has 

the lowest f(x) = g(x) + h(x) cost, we obtain our next node for 

evaluation.  Every node  that has not  been evaluated yet  remains in the 

open set. Every node that has been evaluated is put in the closed set.  

When  the end (target) node is popped for evaluation, the algorithm 

terminates.   

The A* algorithm  keep s track of each nodeôs predecessor. After the 

algorithm ends, the ending node will point to its predecessor, and so 

on, u ntil we reach the starting node and this way we can get the full 

path.  

 

2.5 Linear Regression  

 

We are given a set of points (x,y) that lie on the plane and we are 

asked to find what the principal  directions are, that is directions in 

which the set of points varies  the most  [4 ] . To do this we used Deming 

regression.  

We start by realizing that the ñerrorsò between the points and our lines 

have the same scaling in both x and y directions. That is, the vertical 

and the horizontal axis have the same m easure.  This leads to a delta 

value of one.  To find the best fit, we first calculate certain quantities, 

because the solution can be expressed in terms of the second -degree 

sample moments.  
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Solving for the three variables, we find the best fit for the line equation 

 where we are  expected to minimize the weighted sum 

of squared residuals of the model (see Figure 5).  

 

 

 

Figure 5. Equations for solving the linear regression problem 

 

2.6 Neural Networks  

 

In machine learning, neural networks are computational models that 

are used for pattern recognition  (see Figure 6) . They are represented 

by a network of interconnected nodes called neurons which  can 

perform computations based on input [ 7] .  

 

 

 

 

 

 

 

 
Figure 6. Neural network with three layers of neurons [16] 
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What has attracted the most interest in neural networks is the ability 

to learn. In supervised learning, we provide a set of examples (x,y) 

where x is the input vector and y is the expected response to the 

input. The network adjusts the weights between the nodes so that it 

can approximate the function f(x) -> y. Even if the input does  not  

conform to a specific example, the network will reach a solution b ased 

on generalizations from the samples based on trained weights.  To 

actually train the network, we need an algorithm that will change the 

weights according to what the input -output pairs are. In this case, we 

used the resilient backpropagation algorithm  [13] . 

2.7 Optical Character Recognition  

 

Optical character recognition (OCR) gives us the tools to extract 

character information from visual images. The algorithm employed is 

given an image containing a digit as input and has to decide which 

digit it is [7] .  

 

In the training phase, the algorithm uses a set of randomly generated 

scanlines over the image that either cross or do not cross the digit. If a 

line crosses  about half the digits in the set, the line has a high entropy 

value and can be used to differentiate between the digits. We keep a 

small number of lines, the ones with the highest entropy, as features. 

When the lines cross the digit we input 1 to the corr esponding input 

node of the neural network that we will use to classify the digits. If the 

line does not cross the digit we input 0 to the corresponding input 

node.  

 

After training the network for a large number of samples, we get the 

classified digit in the output layer of the neural network.  
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Chapter  3. Problem Statement  

 

3.1 The Ȱ,ÅÁÇÕÅ ÏÆ ,ÅÇÅÎÄÓȱ Game 

 

In League of L egends  [1] , the player starts  the game  at one side of the 

map. Every  time he has enough  gold, the main currency of the game, 

to buy items, he may do so whenever he arrives at the main platform 

of his base. In every game there are two competing teams. These 

teams are comprised of up to 5 players each, and their  bases are 

located in opposite c orners. Players have to defend their nexus , which 

resides in their base,  and destroy the enemy nexus to win the game. 

At first it  is impossible to actually reach the enemy nexus without 

dying, creating what is known as the lane phase. There are three lanes  

where champions fight for gold. Little entities called minions arrive at 

the lane from each side. The players have to kill the minions at the last 

moment to get the gold otherwise they get nothing. Turrets, buildings 

made to protect the nexus, attack anyt hing in close proximity. Turrets 

provide gold when they are destroyed, and they focus on minions if the 

player is  not  aggressive towards enemy players beneath them. This 

provides the main way to win, beating your lane opponent and after 

that, destroy ing  enough turrets to get to the enemy base. Buildings 

called inhibitors have to be destroyed before the enemy nexus can be 

attacked. Unlike turrets, they revive after some time, but when they 

are destroyed, the ally nexus produces stronger minions. Finally , the re 

are resources for gold between the lanes, in what is c alled the jungle. 

The jungle is not  used by the agents implemented by the game, so we 

will not  be using it  either . However the jungle sometimes provides 

faster paths to move from one point to the nex t.  

Our agent has to buy items, go to his lane, fight with enemy 

champions over minion gold, attack minions at the last moment to get 

that gold and follow his team in team fights . He has to know how much 

gold he has, where to be approximately so he can trav el there when it  

is important, how to attack enemies by combining actions  and  where 

the enemy and ally turrets are (when they are enabled). Another  

feature which is not  used very often is the chat  box , where allies can 

communicate with our agent  to instruc t  him to go to certain places. 

Finally, he has to know when to recall if he  is in low health and when 
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to look at enemy turrets by allo wing the view to not have h im  at  its 

center.  

To do so, he has access to a minimap which contains strategic 

information abo ut the location of buildings, minion and champions. He 

also has access  to the view, which contains the landscape and the 

objects that are placed in  it in close view. We use both, as well as 

some interface information to abstract the game state into our own  

model.  

 

Figure 7. Main view 

The main view of the game  (see Figure 7 )  shows features, such as the 

minimap  in the lower right, the skill section in the middle, and the 

playerôs items to the left. This is the starting point for all champions 

after the game begins or after they  die and their death counter reaches 

zero. After that, agents are free to roam around the map and acquire 

gold.  Our character is also visible, and we can see the health bar that 

is associated with him . The green  part shows our characterôs health, 

while the blue part shows our characterôs mana, used for actions . 

 

 

 

Figure 8 shows  our agentôs health bar. We use the lines that separate 

the health into parts to count how much health our character has. 

Every vertica l black line corresponds to a 100 -value increment for our 

current health.  

Figure 8. Character health bar 
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Figure 9. Non-lane terrain / "Jungle" 

 

Our map processing system  provides clues as to which jungle monsters 

are alive  (see Figure 9) . Our character does n ot  want to attack these  

monsters  and they are left for the player whose specialty is getting 

those monsters in the jungle. However, we detect them both in our 

minimap , to see if they are available for the taking, as well as in our 

view, in the same way we view normal enemy minions. Since they are 

not close to dying, our agent will not  attack them.  

 

Figure 10. Lane view 

 



24  
 

This is a view of the lane  (see Figure 10 ) . Inside it, we see ally and 

enemy minions fighting each other. A ñwaveò of minions grants 

protection against certain champion skills as well as turrets, which 

target minions first unless our agent provokes enemy champions 

beneath them.  

The health bars are surrounded by black lines which contain either blue 

or red filling bas ed on whether the minion is an ally or an enemy of the 

team  (see Figure 11 ) . 

 

 

 

 

 

 

 

 

 

 

I n this view  (see Figure 1 2) , we see that ally turrets have health . The 

buildings they protect have no health bars until the turrets are 

destroyed . The nexus is prot ected until both turrets fall (see F igure 

13 ).

 

Figure 13. Enemy buildings in "fog of war" 

 

Figure 11. Minion health bars 

Figure 12. Turret health bar 



25  
 

We can also see that e nemy buildings are hidden from the fog of war  

(see Figure 13 ) . We can see whether they are there, but we cannot see 

how much health they have. This is a problem when we want to see 

things outside our  characterôs range, since we do not know if the 

building is covered in fog of war or is simply missing . Since detection is 

mostly done through health bars, this becomes a har d problem that 

persists through many feature detecti on  algorithms .  

3.2 Thesis Goals 
 

What we are trying to implement runs across two dimensions. First we 

want to detect the features accurately. This will provide the missing 

API  we need to  connect our agen t to the game. To complete this 

connection, we need to make sure the substrate is there to support our 

actions inside the game. Thus we need to abstract the 

keyboard/mouse input system, and create an accurate representation 

of the game state based on the s creenshot.  

After we do this, we have a small amount of resources, measured in 

processing time, to actually implement our behavior. Our agent has to 

obtain more gold than the opponent. To do so, he has to decide where 

to be and what to do. Positioning is ma inly done through the minimap, 

with  clues as to the whereabouts of enemies or potential for gold. 

Defending turrets against enemy champions  and minion waves is also 

important, because denying the enemy gold is a valid tactic.  

We obtain gold mainly through  last hitting enemy minions. This means 

that our perception of the view must be very accurate and detect all 

the important entities on the screen, as well as record statistics about 

them. After we know how much health the enemy minions have, we 

must organi ze our attacks so that we can last h it them to gain gold. 

We need to coordinate a lot of actions , from attacking minions, to 

going back to avoid sources of danger and engaging  enemy 

champions .  

Finally , we would need to be able to understand communication from 

teammates (i f not outright respond to them)  and recognize the amount 

of gold we currently have in order to buy items.  

If we do all these , our agent will be able to get gold early in the game, 

buy items and be a force to be reckoned with later in the g ame, where 

killing enemy champions and destroying enemy buildings becomes a 

priority. If the management of our position and gold is sufficient , we 

will  be able to win by des troying most of the enemy buildings (enemy 

nexus included) and winning the game.   
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3.3 Related Work  
 

A similar problem was presented at the IEEE Computer Intelligence 

and Games conference, where a competition was held with the purpose 

of creating a controller for the game ñMs. Pac Manò [ 3] . 

 

The objective was again twofold, first use the screen capture method 

to obtain the game state, and afterwards act in the best interest of the 

agent. The same kind problems were present in this version of screen 

capturing agents since firstly, non -determin ism and secondly, screen 

capture not accurately reflecting the current game state, since some 

time has already passed  from the moment of the screen capture .  

 

It is arguable that in ñLeague of Legendsò the game is deterministic, 

however unlike ñMs. Pac Manñ where the game state is extracted 

easily, in League of Legends we have non -determinism because of the 

amount of visual information that cannot be extracted accurately. 

Overlapping causes serious issues in determining the exact game 

state , and that along with the delays in action, which can reach 

important fractions of a second, become a similar source of 

inefficiency.  

 

The methods employed for screen capture in the game of ñMs. Pac 

Manò were  adequate  to capture the entire game state in less than ten 

milli seconds. We are not granted the same privileges since extraction  

of an incomplete game state in ñLeague of Legendsò requires an 

amount of milliseconds in the hundreds. Since required response times 

are similar between the two games, we had to use the time allotted 

more efficiently and without using too many resources.  

 

Thus , in a way, this problem proves to be much more complex than 

the ñMs. Pac Manò controller implementation  and our agent has to 

make tradeoffs between efficiency and resource management.  
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Chapter 4. Our Approach  

 

4.1 Visual Cues, the Map System 
 

Our starting point is the snapshot of the map view (see Figure 1 4). 

Initially , we just want to get the rgb value of pixels inside the image 

and transform it to a more useful form.  

 

Figure 14. Initial Map Screenshot 

The transformation fro m the rgb  color space to the hsv  color space is 

essentially a mapping between red, green and blue components to 

hue, saturation and value ( brightness )  components.  

The rgb  color space is co nvenient , because currently available 

computer monitors produce light of different wavelength s to produce 

any color on the screen. However , humans classify colors not based on 

the se components , but based on the hue , which is the pure color 

category, the sa tu ration , which shows how faded the color is , and 

value , which indicates  how bright it  is.  

We can clearly see  that  there are many  colors to be used in the 

recognition of map entities. We need to reduce the amount of 

information in the map , so that the poss ibility that  background noise 

and variation will alter our results will be come  insignificant.  
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Figure 15. Quantization of the map screenshot 

After this initial phase, we quantize the results , so that the visual 

information is cl earer  (see Figure 1 5) . For every component of the hsv  

color space , we quantize the range uniformly using  a small set of 

discrete value s (10 values for hue, 2 for saturation, 2 for value) .  

We have already lost some of the available information, for example  

wall placement, but the tradeoff is that we also gained clarity. It is also 

clear where our agent has visibil ity on the map and where there is  

visual obstruction , also known as ñfog of warò.  

We already see that noise has entered the picture and  that ther e is  no 

exact match for any kind of target image  we need  to detect. The goal 

is not  simply to match a small target image pixel for pixel, but rather 

use a method that is resilient to background noise and variation.   

First, we remove the orange parts inside  the map , as they correspond 

to visible areas . We can already see some degradation in the quality of 

our championôs image, but we can also see that what remains  is the 

information that is important . At this point, image processing can begin 

(see Figure 1 6) . 

 

 

Figure 16. The map after the removal of visible (orange) areas 
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Since we do  not  want to lower the quality of our image, after det ecting 

the location of features , we use the original , not the quantized,  map to 

detect the exact c olors  in each one.  In features that location is already 

established, we use scan boxes  on the original image  to form  

histograms . The term box is a bit misleading , since these mini images  

take either square or circle shapes to accommodate different kinds of  

features. They are taken from the original image of the map . The 

histogra ms that are formed by these scan  boxes are essentially  vectors 

of hue, saturation and value that we are able to use to determine 

whether the location contains the target feature or n ot.   

As already established, h istogram vectors are objects that contain the 

hsv values of scan  boxes on the minimap. We first examine 

predetermined  location s of a feature and then create a dis k on the 

image that analyzes the pixels inside the disk . This pr ocess  form s a 

histogram vector , which is a cumulative count  over all these pixels,  

which  can be used as a prototype or blueprint of the original feature.  

Comparison takes places either on the entire vector or  on part s of the 

vector.  If the image contains o ther features or the original feature we 

are looking for is missing, the distance from the prototype histogram  

(or parts of )  becomes large and does not  meet our thresholding 

criteria. However, w hen these thresholding criteria are met, we update 

the state t o reflect the fact that we have found the feature we were 

looking for.  

The scan area  takes the shape of a disk , because most features have 

complex shapes that generally fit inside the circle, meaning that ,  if 

other pixels outside the disk were considered,  they would just help to 

introduce noise and variation in our sampled features, making 

meaningful comparisons with the prototype  vector difficult.  These  

prototypes are sampled in -game and serve as representatives of the 

features they are taken from.  The histogram vectors shown  in the 

figures below  are concatenated, meaning that each component (hue, 

saturation and value) is represented by one third of the vector image. 

The coloring scheme helps understand what each component 

represents inside the vector.  An example of a histogram vector is 

shown in Figure 1 7. 

 

Detection of buildings and jungle  monsters  

We begin our detection of buildings and jungle monsters by using the 

histograms generated by the disk -shaped scan  boxes on preset 

locations. We select cert ain ranges inside the histogram  and use them 

for thresholding. If the count of pixels inside that range surpasses a 
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certain value, we consider it a valid detection of the feature. Buildings 

come in two varieties. Enemy buildings are mainly purple and allied 

bu ildings are mainly blue. We use a high value in the hue section of 

the histogram that represents these colors to identify the buildings 

correctly. For the jungle, we use the color orange to identify the jungle 

minions. A threshold was again used for this r ange of the hue 

histogram to obtain a detection criterion. A specific exception is two 

jungle monsters (dragon and baron) in the main diagonal, which a re 

detected b y using the same technique used for character identification. 

This is explained in detail in  the ñIdentifying charactersò section below. 

The prototype histogram vectors of jungle monsters and ally buildings 

are shown in Figure 17 and Figure 18 respectively.  

 

 

Figure 17. Jungle monster histogram 

 

  

Figure 18. Ally building histogram 

 

Hough Transform for minion disks  

Minions on the map appear as small cyan (allied) and red (enemy) 

disks. Therefore, w e first filter the image to keep only the cyan color 

and apply Hough  transform to detect such  cyan  disks  (see Figure 19 ) . 

The same procedure is repeated for the red disks. The accumulator 

space for the transformation is for  disk s of specific radius , but of 

unknown  location.  This means that we are looking for (x,y) pairs that 

signify the center of our d isk.  For every point that is potentially a 

center of a disk that can produce the pixel we acquired from the 

minion image , we add a unit to our accumulator  space on  the diskôs 

central  location . Since the centers of all disks that can produce our 

point form  a disk, we simply add a unit disk centered on our current 

point to the accumulator. In the end, we are left with points of high 

value that represent disk  center s and background noise is filtered out.  

As shown in Figure 19  (left), the filtered image contai ns only cyan 

pixels. After acquiring  this filtered image , we perform  the disk Hough 

transfo rm and produce  the resulting Hough transform space (see 

Figure 19, right). We can see that the characterôs circle is visible, but 
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does not  have a high  enough  value. We can clearly see that the minion 

gatherings have high values and can be detected easily. Since we 

know the radius of the minion disk, after a valid detection we remove 

the peaks that occur inside the area of the detected disk s. This means 

that inside eve ry minion gathering we f ind around 4 -5 disk centers. 

Using this information, we can update our map state accordingly.  

 

Figure 19. Filtered Image (left) and Hough transform for minions (right) 

Ho ugh Transform for character circles  

To perform the Hough transform for character circles, we again  process 

the cyan or red filtered  image . We use a negative edge mask to detect 

where the image pixels go from cyan values to other values . After we 

apply the mask , we get the result shown in Figure 20 , on the left, and 

we extract only the pixels in red color  (edges) . Now we can use these 

pixels to apply the Hough transform method for circle detection.  We 

simply have to  calculate , for each pixel , the circles that are able to 

produce it.  The Hough transform again has two parameters, (x,y), 

since the center of the circle is unknown , but th e radius is  known .  

 

 
Figure 20. Processed Image (left) and Hough transform for characters (right) 
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Since the center of the circle produces all the points, we get the 

correct location of the circle in the accumulation plane  (see Figure 20 , 

right ) . All the false peaks  are created by circle parts  formed by minions  

that simply do  not  add up. After we detect the ci rcle we remove the 

center  and its neighborhood,  so that we do not detect the same circle 

twice.  This procedure is repeated for detect ing the red (enemy) circles.  

Id entifying  characters  

 

Figure 21. Character prototype hsv vector 

Identifying the characters is done through a prototype  hsv  histogram  

(see Figure 21 ) . We compare the Manhattan  distance  in the vecto r 

space  between the currently perceived histogram in every component 

with the prototype . This vector was taken from a disk -shaped  scan box  

which was applied on the resulting circle centers of the Hough 

Transform method.  

Another way to detect the character s inside the map is using 

correlation hue  vectors  (see Figure 22 ). Every entry  in the 12x12 

matrix  shown in the figure  represents the correlation between hue 

values over neighboring pixels inside the scan disk. Each entry 

corresponds to jump ing  from a cert ain hue value to another  hue value 

when moving from some pixel to the neighboring pixels on the right 

and bottom. Columns refer  to the hue value of the original pixel , while 

rows refer  to the hue  value  of the destination pixel.  The prototype 

correlation ma trix of a character is matched against the correlation 

matrix of any candidate character.  

 

 

 

  

 

 

This way we can differentiate  surfaces of many consistent  fi lling s from  

surfaces with alternating regions of colors, providing means for more 

Figure 22. Accumulating correlation matrix 



33  
 

accurate charac ter identification.  These two identification methods are 

used jointly to ensure that  character identification  is valid. Sin ce they 

are not completely dependent, their combination gives greater 

detection accuracy . In this case, t he whole is greater than the  sum of 

its parts . 

 

Figure 23. Complete detection of map features 

In summary, d etection of non -colliding features is 100% accurate , as 

shown in Figure 23, where all detected features of the map are marked 

using  colored boxes . 

4.2 Visual Cues, the View System 

 

 

 

 

 

 

 

The actual in -game view provides enough information about the 

environment through a user interface filled with health bars and other 

statistics  (see Figure 24 ) . 

After we focus our efforts on detecti ng horizontal lines consisting of 

black pixels, we acquire the location of important features.  We need to 

preprocess the main view image to infer the locations of entities on the 

Figure 24. Main game view with entities visible 

Enemy minions 

Ally minions 

Enemy inhibitor building 

Enemy turret building 

Ally inhibitor building 

Ally character 

View 

Jungle monster 

Jungle dragon monster 

Ally turret building 
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map. These include the character health bar and building or 

minion/jungle hea lth bars , and unfortu nately background noise as well .  

We process the main view and keep only the black pixels. For the 

cha racter health bar, which does not  contain only  black pixels , we also 

keep the  grey pixels of certain hsv values. What we get from this  

filtering of the main view image is enough to locate all the necessary 

entities for robust recognition from the view.  Figures 25, 26 and 27 

show the results of this filtering.  

 

Figure 25. Character health bar black and grey pixels 

 

Figure 26. Building health bar black pixels 

 

Figure 27. Background noise black pixels 

It is  clear that  there is  a lot of noise surrounding the locations of 

important features and we have to remove it.  We detect character 

health bars (see Figure 25 ) and building health bars (see Figure 26 ).  

Background noise is also detected , but is ignored (see Figure 27 ).  

To actually detect the lines, we need to form  a mask and a threshold 

that will filter out backgroun d details. First , we obtain an image where 
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every pixel is 1 , if it is black , and 0 , otherwise. We use the mask 

shown in Figure 28, which is a horizontal line detection mask,  to form 

an image that is thresholded for values larger than  zero to produce the 

final image , which contains horizontal line  segments from health bars 

only . Even the black filling inside a deple ted health bar will not show 

up , which is precisely what we wanted . Afterwards, we detect lines of a 

certain length that are continuous . The rema ining  line segments are 

classified  as entity health bars.  

 

 

For minion health bars, we remove duplicate lines that are spaced 

within a certain distance of each other and add to the collection of 

double lines that make up minion entities.  

For character health bars , we first detect t he health bar  and count the 

disc ontinuations that reflect a one -hundred value increment on current 

health. We also estimate  the maximum amount of mana  which enables  

actions  based on character level and we get a percentage o f the  blue 

line length of the mana ba r, enabling us to estimate the current mana.  

The character below a health bar in the main view is detected based on 

prototype  hsv histograms. We combine the hue, saturation and value 

vectors into one big description vector a nd compare with our 

character ôs prototype vector (see Figure 29 ) . The scan box  used to 

form the histogram vector is of  square shape, so that the character 

can fit most of his pixels inside it. Round scan boxes  would take parts 

from the health bar and evalu ate them as if they were character pixels , 

so we do not  use them . Before forming the hsv histogram vector, we 

eliminate background pixels based on thresholding over saturation and 

brightness values. The resulting vectors are normalized based on the 

number of pixels we actually used to form them . This is necessary , 

because , while the amount of pixels inside a scan box in the map view 

is always the same, in the main view, by removing ex cess pixels from 

the background  and based on character rotation, we obtain  a variable 

Figure 28. Mask for line detection 
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number of pixels from the character ôs image inside the scan box (see 

Figure 30  ï eliminated background pixels are shown in black ) .  

To actually compare the hsv vector to  our prototype vector, we weigh  

the components, so that differences betwee n the different components 

would not  affect the ñdistanceò between the sample image and the 

prototype in the same way. Value entries are  the  most important 

component, so they are  weighted by a factor of 3, saturation  entries 

are  weighted by a factor of 2 and  hue entries are  weighted by a factor 

of 1. Since this weighting was implemented before creating the 

prototypes, we can be sure that the same weights apply to the original 

prototype vectors.  

 

Figure 29. Character prototype hsv histogram vector in the main view 

 

 

 

 

 

 

We now turn our attention to the problem of finding where walls are. 

Figure 31  is a mosaic representation of map and view features. The 

walls are projected from a two -dimensional stored wall map image  to 

our 3d view. Features detected inside the main view  are placed without 

relocating them to a new place, since their original places are correct.   

 

Figure 31. Wall transformation from map to view 

 

Figure 30. Image for hsv vector extraction 



37  
 

 

Figure 32. View of the walls 

 

Notice that the walls in Figure 31  (the grey dots)  correspond to the 

actual walls  in Figure 32 , so that now our character may use  manual  

pathfinding.  Note the images in Figures 31 and 32 are not 

synchronized; the minions (blue dots) have moved to the right in 

Figure 32, which is a later snapshot.  

A transformation from a 2d image to a 3d perspective view is required. 

For this  transformation, we first observe that the horizontal location 

affects how much stretching and shearing occurs while moving 

ve rtically. At the center there  is no horizontal transformation, but as 

we move to wards  the sides, and closing in on the top of the sc reen, 

our location gets dragged towards the center.  

By using observed and expected values for certain  fixed points , we 

dete rmine the values of constants necessary for the transformation to 

be a good approximation . To do this we use points that have the same 

value in one dimension , but a different value in another  (for example, 

same x , but different y) . The  dimensions  do not  in teract  with each  

other , since  we have a sum of products of at most one unknown 

dimension in  each . Thus  we obtain the correct values for the constants . 

The walls are available  in the minimap , but are not clearly defined. To 

form the stored wall map, we star t with an image of the minimap and 

we manually marked black pixels to represent walls . We also manually 

inserted white pixels to erase black pixels already in the map that were  

not  part of walls  (see Figure 33 ) . Our software detects where the black 

pixels lie in this image and places walls in those locations. Finally , we 

update the view state to reflect the walls inside our 3d view from the 

2d to 3d mapping of the imageôs wall data.  
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Money OCR recognition  

In order to observe the amount of money in the possession of our 

agent, we have to use optical character recognition on the image that 

represents the amount of gold we have. An example of such an image 

is shown in Figure 34 . 

 

Figure 34. Sample money image extracted for optical character recognition 

In order to extract the characters, we use a library that separates 

characters ef ficiently. Unfortunately, the available  built - in function s to 

actually identify the characters were suffering from accuracy issues. 

Thus, we trai ned a neural network that would identify singular digits 

from their images with a high degree of accuracy.  The digits 

themselves show enough variation to confuse naµve methods for 

character extraction  (see Figure 35 ) . 

 

Figure 35. Separate digit images and variations 

We train a multi - layer neural network  based on the E ncog J ava library 

to make the detection of digits accurate. Instead of using pixel values 

inside the images (which would require 400 input neurons for a 20x20 

grid)  we use a line - intersection method  [7] . Initially, we produce a lot 

of scan lines on the images randomly. Then we evaluate how many of 

those scan lines were important based on a measure of entropy. If a 

scanline  is touching a digit and is crossing  around  half of the digits, its  

entropy will be at  approximately its  maximum value and that  scanline  

Figure 33. Wall data in map image 
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can be used as an input feature in the neural network for digit 

detection.  If a scanline  is crossi ng either al most all digits or none, it 

has low entropy and we cannot use it  to differentiate between digits. A 

small number of scan lines are kept to form a set of features used to 

train an artificial neural network on the samples of digits  (see Figure 

36 , unique color for eve ry scanline ) .  

 

Figure 36. Example of scanlines used to identify the digits. 

After enough variation samples were accounted for, the final 

classification was reliable and accurate. The neural network used three 

layers, one for input , one for output  and a hidden middle layer using  

double the number of neurons of the input layer . After training the 

network  using back -propagation , we used it on the cropped digit 

images to properly classify the digits. We obtained the final amount of 

gol d by multiplying each recognized digit with a proper power of ten. 

Since sometimes the OCR library omits detection of certain digits, we 

do not  have a completely accurate gold detector, however this event is 

rare enough that every time our agent is trying to calculate his sum 

(aro und 5 -6 times in every game) , he wi ll be able to calculate the  

amount  of money  reliably.   

 Skill Upgrade  

We use the same methods that we used to detect jungle and building 

entities to detect whether a skill upgrade button exists. These buttons  

have a fixed location and appear only when our character is able  to 

upgrade his skills . This way we can keep track of our characterôs 

current level, which affects a number of game statistics, thus enabling 

us to accurately estimate character i nformation , like maximum amount 

of health or mana.   

 

4.3 Decision Making  

 

Items  

Item selection is linear based on the amount of money we have. Every  

time our agent visits the nexus, he can buy more items based on his 

current gold.  He spends the maximum amo unt of gold he can to buy 

the items in the list.  Every item bought is subtracted in gold value from 
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our total amount of gold.  We stop buying items when we reach a total 

of 6 core items and thereôs no more space for purchases. Sometimes 

the agent sells star ting items ( currently, without further modification, 

just the ñDoranôs ringò item ) to make space for more important late -

game items.  

 

Cooldowns  

We have a specific order for upgrading skills.  After our game state is 

informing us that thereôs a skill upgrade to be made, we press the right 

combination of keys to upgrade our skill. If this was the first upgrade 

of the skill, it enables us to use it for the first time.  Another system , 

the cooldown calculator, is able to tell us which skills are available due 

to being upgraded. Using those skills locks them for a certain duration. 

We use the systemôs clock to measure the exact time it takes for a 

cooldown to end . After that time has elapsed, the skills are available 

for use again.  An understanding of our opportuni ties for aggression is 

based on the exact amount of skills that are free of cooldowns. This 

proves really important when we try to remove the enemy champion 

from the lane. Thus, cooldowns are a measure of aggression and used 

in the ñaggressiveò mood state.  

Strategist  

The strategist is responsible for the formation and evaluation of 

interesting points in the minimap.  I t is  tasked with choices pertaining 

to strategy . 

The game itself forces the champions to have a starting laning phase, 

where they stay betwee n enemy and ally turrets and fight for gold. Our 

champion ignores other lanes when the game starts, and after the first 

lane turret has been destroyed , becomes  free  to roam around the map.  

The creation of interest points depends on our observations of the map 

state. Collisions of minions, team fights , enemy characters, minion 

waves pushing turrets and even chat commands allow for the 

development of points in a list.  

For every such point, the distance from our character is deducted  from 

the initial interest value (which differs based on the event), as is the 

distance from the  center of operation s (which is the lane to which we 

have been assigne d to ) . Aft er the laning phase is over, it is  only the 

distance from  our champion  that is accounted for. This  permits  free 

late -game  movement to interest points.  
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When inner turrets near the nexus are attacked they get huge priority 

bonuses. But the most common event that our character is motivated 

towards following is minion wave collisions, where ally and enemy 

minions a re in close proximity.  

After the list of interest points has been created, we evaluate the 

interest point s to find the one  that is the most important by comparing 

its priority value against the other ones . This is sent as a signal of 

where to be in the moo d system.  

 

Figure 37. Strategic interest formation (left) and final interest point (right) 

In Figure 37 we see the strategist in action. In the left part of the 

figure, we see the many auxiliary points that help with the formatio n of 

interest points. Green and orange dots are buildings while cyan and 

pink dots are minions. Depending on the kind of event that happens on 

a location we assign a priority to the interest points formed. The final 

points can be seen in the right part of the figure, with the yellow dot 

representing our character.  

Mood  

The mood system is a complicated system of behavio rs centered on  a 

theme. This will occur once  for  every perception -action cycle . This 

system decides to use only a small set of decision algor ithms for every 

kind of targeted mood. We get around three cycles every second  

meaning we couldnôt manage a system that globally estimated every 

kind of decision simultaneously. Since we can make around three 

actions every second, we get ample of time to s witch our behavior 

phase  and behave differently. This proves effective and versatile in 

dealing with changing environmental conditions. The mood is 

developed based on our current estimates of the game  state. Minions , 

turrets and enemy characters make our a gent ñScaredò. If the view 

cannot detect our controlled  champion, the mo od becomes ñConfusedò. 
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If there is  an enemy turret that we cannot really see but is close 

enough to our champion , the agent becomes ñCuriousò. Enemy 

characters make the agent ñAggressiveò while enemy minions make 

him ñGreedyò. If the agent has to go back he becomes ñHomesickò. 

Finally, if an interest point exists, the agent is ñInterestedò. This 

system decides which kind of algorithms wi ll run to determine our 

actions, based on the exac t amounts of all these mood types that are 

competing for control.  

After the mood has been developed , a comparison between different 

moods with different priorities ensures that the proper action type will 

be taken. However, even when we know the approximat e action 

strategy the agent should be utilizing we still have to define a complex 

behavior based on the game state.  

Mood state:  Confused  

The agent has use this action cycle to relocate himself. He centers the 

view on himself  by using the spacebar key  and c ontinues to the next 

cycle.  We donôt want to detect anything else or take away precious 

processing time from our next cycle, so the visual perception process 

ends immediately.  

Mood state:  Curious  

The agent is close to a turret that is not hidden by the fog  of war 

(turrets outside ally minion/champion ranges are not available for 

detection from our view systems). We move the view towards the 

turret and change the state so the information is updated based on 

what we saw.  This means that the game state will be  able to affect 

what the visual phase of the next cycle will be able to perceive. This is 

not unlike eye movement where we notice something interesting in a 

place we do not currently see and move our view to perceive the point 

of interest.  

Mood state:  Home sick  

The agent is low in health and has no other interest. He goes back to 

the nearest turret to recall back to the base.  This is possible because 

we can estimate which allied turret is the closest to our agent and start 

recalling there. To accurately dete rmine which places are deemed safe 

we use the map state.  

Mood state:  Interested  
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The agent has located a place of high interest. He wants to take an 

action to move to that place. The game already provides a robust 

algorithm for path formation from any point  to any other. Our agent 

simply right clicks on the minimap to the place where he wa nts to be 

at. This is the mood of least priority  and is only activated if other 

moods are inactive . To actually determine which place is of highest 

interest, we first form every kind of interest point on the minimap. 

These include but are not limited by minion collisions, character 

collisions, turrets being attacked by minion waves, turrets being 

attacked by characters, interest points created by chat commands and 

lane point s (which are created after we choose the lane we want to 

play at ).  

Mood state:  Greedy  

When there are enemy minions on the map, the agent becomes 

ñgreedyò. Since minions are  the most important way of acquiring gold 

our agent is focused on last hitting as m any  as possible. Enemy 

minions have to die by our agent and not some other cause,  to give 

their gold  to him . 

Our agent performs corrections on his position based on his  ally  minion 

wave (since being outside it means he can be attacked by enemy 

minions). If  a low health target is available, the agent moves towards 

it. When an enemy minion is about to die, our agent attacks it to get 

its gold.  

Sometimes the agent has to use skills (rarely because the skills require 

an expendable resource, mana, and then have  a cooldown period 

where they cannot be used again) to destroy  the enemy  minion wave 

before it reaches our  turret. Minion waves that reach a turret are 

quickly eradicated  by powerful turret attacks, denying our agent gold.  

Our agentôs most promising way of dealing with an enemy minion 

wave is using a skillshot. A skill is called a skillshot if it is a projectile 

shot that takes skill to aim properly. When there  is great variance in 

enemy minion location, determining the best line for a shot can be 

difficult . Also, our champion has to target a point, so to make sure the 

skill follows a specific line the starting point has to be on  the line too.  

Our agent calculates the best line that fits the enemy minionsô 

locations and then follows the shortest path to  it. After he  arrives at his 

starting point , he uses his skillshot towards a point o n the line that is 

further away , towards the minion wave.  To do this,  we perform  a 

regression fit of a straight line to the se t of coordinates of the minions 
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by using the Deming  regression model.  If enough minions are visible 

inside the view, and we have enough mana, we decide to use the orb 

attack to kill or lower the health of as many minions as possible.  

Mood state:  Scared  

The agent is trying to find escape routes from sources  of danger. We 

have used a mapping from two -dimensional wall data to three -

dimensional obstacles. Thus,  we have access to obstacle information as 

well as the sources of danger.  

We use the A* pathfinding algorithm to follow the path of least danger. 

We mak e a grid of nodes where every node that is a viable path is 

connected. The weight of the path is changed to reflect the fact that 

moving close to  danger sources is harder than moving away from 

them. Thus danger sources like turrets radiate their weights fi rst  based 

on distance , and when the A* algorithm creates the starting nodes it 

applies the ñdanger proximityò value to the distance between nodes. 

We find the fastest way to move from our current location to a safe 

side of the screen which lies near an all y turret  by using the results of 

the algorithm . Doing  so produces safe paths that do not  follow the 

normal pathfinding provided by the game (which only takes distance in 

consideration) but also a utility cost modification that weights the 

danger of a path against the shortness of its  length.  

After we find the proper path, we follow part of it towards the edge of 

our view . We use the Manhattan distance to calculate the admissible 

heuristic of the A* algorithm, since we only make horizontal and 

vertical movem ents. This means that our heuristic will never 

overestimate the distance, since it represents the minimum distance 

possible.  

Mood state:  Aggressive  

The agent has calculated whether he  is in a winning or losing situati on 

against a close opponent. He has  decided that he wants to engage the 

opponent. Either he is a little aggressive and just wants to ñpokeò the 

enemy or he wants to go for a ñkillò. Poking uses a minimal set of 

actions that do not  expend a lot of the agentôs resources. Trying to kill 

the enemy  player results in loss of resources and is to be made after 

we can predict that there  is a great chance it will  lead to a kill.  

The cooldown calculator gives a rough es timate of what our agent can 

do, and by comparing health and cooldowns we can approxima te our 

chances for winning in a one vs one situation.  A team  fighting potential 
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module also calculates whether we should engage in a larger fight that 

includes more than two champions fighting.  

After all these imply the opportunity for attack, our agent em ploys a 

coordinated attack against the enemy. This attack puts certain skills on 

cooldowns by using them to attack an enemy character. After the 

coordinated attack is over our agent goes back to his ally minion wave 

because of the lack of cooldowns  to use in attacks . 

Chat Commands  

We use a simple bag -of -words model to classify s entences based on 

their meaning  [1 2] . Most of the work focuses on how to be able to  

respond in game, al though there is  no functionality  to s upport 

transforming our answer s trings into a series of keystrokes. However, 

certain mention s of objectives do interact with the Strategist to create 

new  interest points for our agent, like the dragon, the blue buff or the 

baron jungle monsters.  

For t he model itself, we create mappings between certain words and a 

standard list of word s. This standard list also creates mapping s 

between the few words in the dictionary with concepts.  

Then we get an activation system that determines the way concepts 

intera ct with each other, activating more if they are related positively 

and less if they are related negatively. Finally,  we check the activation  

status  of our output concepts which determine what behavior our 

agents should have.  

In case there is  a chat command  that says we should go to an 

objective, our agent is able to form an interest point in the minimap 

that will guide him  there  strategically. If he has no interest in pursuin g 

something inside the view, he is  inclined to follow the objective as 

commanded fr om an ally through chat.  

Only one response is an actual interaction between the agentôs actions 

and the chat, while others are simply ways for the agent to 

communicate in future implementations.  The agent understands and 

forms a response without actually t yping it, since we do not  want to 

spend cycles typing instead of interacting with our game environment.  

 

4.4 Action Mappings  

 

To output actions to the game, our agent has to make simple output 

actions that the game understands like moving the mouse or pres sing 
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keys. To do this, we rely on an abstraction of the output system, which 

assigns general commands, like moving the view or clicking on a point 

of the map, to actual movements and clicks on the lowest level  of 

abstraction .  

To create input our agent mai ntains a queue of commands that are to 

be executed in priority. After we determine the abstract action we want 

to perform, like an exploration move ment  to  Point a, the system first 

determines what mouse and keyboard actions are necessary. After 

determining  this middle level representation of keyboard and mouse 

inputs, we convert the input to the lowest level of input. For example 

the action of moving the mouse and then pressing ñQò becomes a 

mouse movement to a specific point, a ñQò key press and a ñQò key 

release for a certain duration. After this is done, we consider the action 

completed and we can follow with another action.  

 

4.5 Implementation  
 

The following  is a list of specific implementation details and imported 

libraries neces sary for implementing th e agent.  The libraries are open 

source and free to use.  

-  The neural network  we created used  50 input neurons and 100 

hidden neurons to calculate the result in the 10 output neurons .  

 

-  We used the encog neural network library for creating and 

training the neu ral network for optical character recognition.  

 

-  We used the JavaOcr library for extracting characters and 

separating them in different image files . 

 

-  We used the Tesseract java library for determining the content 

of chat images , where players communicate wi th each other 

inside the game .  
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Chapter  5. Results 

 

First ly,  we want to determine the accuracy of our visual systems. They 

prove robust enough to be used in isolation as an auxiliary api that the 

agent can use to acquire utility from the environmen t.  

Secondly, we want to see if the agent can survive in the environment 

and have a decent performance. Verifying the exact effectiveness of 

our  whole  implementation will depend on comparisons to  new human 

players , beginner bot agents  as well as dummy ñrandomò agents.  

If we explore the idea of a random agent inside the game we soon 

come to find that it is  going against our intuition of what we should 

compare against. If we take chess as an example, a random agent 

would produce meaningful choices every once  in a while, making 

seemingly ignorant moves when something is obvious to a human 

player but completely ignored by the agent. This is not the case with 

League of Legends. Coordinating even a simple action proves much too 

difficult for a random agent. The d egree of freedom is so vast that any 

kind of randomness in our agent proves detrimental to his success in 

the game.  

 

5.1 Screen Capture 
 

It was essential for the agent to be able to capture the screenôs 

elements with great accuracy. The second most import ant source for 

information is the mini -map. When the different elements of the 

minimap do not collide, we get 100% accuracy in detecting them. This 

holds true even when the box surrounding the view (which is a white 

parallelogram) alter s the values of the elements enough to distort their 

histograms . Consequently , wherever we look  non -colliding map 

elements will be detected with complete  accurac y.  

Since  features can possibly collide, we made sure to use techniques 

that are not susceptible to variation and di stortion of the original 

features . When minions pass through the terrain and meet turrets, the 

turrets are for the most part recognized without problems. However, 
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when the character almost com pletely obscures the turret, it is  hard to 

recognize it and it b ecomes deactivated . This is important  because it 

shows that we do not get false positives if the element significantly 

changes.   

 

Figure 38. Scanbox feature detection in the minimap 

As we see in Figure 38 , we get black and white b oxes for turrets, which 

have all been recognized  except the one that collides with our 

character , grey boxes for inhibitor buildings, orange ones for  the  jungle 

(as well as green for the dragon and baron  jungle monsters ), and 

finally cyan and pink for the minion waves. The minion waves are 

composed of many little disks that represent minions. Our view is 

shown in yellow, where the left , middle and right part have been 

recognized completely. The character is shown in blue, and enemy 

characters, if any, would  be shown in red.  To see how we handle false 

positives, we take another screenshot when some features are 

missing.  

 

Figure 39. Scanbox feature detection in the minimap(cont.) 








































