
1

Technical University of Crete

School of Electronic and Computer Engineering

Design and Implementation

of an Autonomous Agent

for the ά[ŜŀƎǳŜ ƻŦ [ŜƎŜƴŘǎέ Game

Dimitri os Trigkakis

Thesis Committee

Associate Professor Michail G. Lagoudakis (ECE)

Assistant Professor G eorgios Chalkiadakis (ECE)

Professor Michalis Zervakis (ECE)

Chania, October 2014

2

3

Abstract

After the commercial success of the v ideo game ñDota ò, there has been

increasing attention given to the Multiplayer online battle arena (MOBA)

subgenre of Real Time Strategy (RTS) games . The creation of agents able

to play autonomously within such games is sometimes limited by the

absence of a public application programming interface (API) . This applies

to the popular game ñLeague of Legendsò, which was greatly inspired by

Dota. The few computer -assisted players provided by the designers of this

game range from beginner to intermediate, but have direct access to the

private API inside the game. This thesis introduces a novel way to handle

auto nomous agent creation in such games , where access to the game

state is limited to the information displayed on the userôs screen. The

proposed methods come close to what a human player does, since there is

a perception phase, which relies mainly on visual analysis , and a decision

phase, whose outcome affect s the game through emulation of the

keyboard and mouse input devices. To achieve this we use screen capture

on the gameôs interface and computer vision algorithms to detect

important information. Then , we use artificial intelligence algorithms to

encode behaviors for the game character we control . Realizing this

perception -decision -action cycle is very demanding in terms of

computational resources , however our optimized implementation manages

to meet the r eal - time requirements of the game. Our autonomous agent

for the ñLeague of Legendsò game is able to achieve intermediate level of

play and is quite competent against the designer -provided agents and also

against beginner human players.

4

5

Acknowl edgments

This thesis would be impossible to complete without the positive

reinforcement from my advisor M. Lagoudaki s, and his constant support. I

would like to thank him and my committee for their seemingly endless

eagerness to help me with any problem throughout my university studies.

I would also like to thank my family and friends for their

involvement in my efforts to keep me motivated and productive during

this thesis. You have been great.

6

7

Table of Contents

Chapter 1. Introduction ... 11

1.1 Motivation ... 11

1.2 Thesis Contribution.. 13

1.3 Thesis Overview... 15

Chapter 2. Background .. 16

2.1 Hsv Color Space ... 16

2.2 Hough Transform ... 17

2.3 Histograms .. 17

2.4 A* Algorithm ... 18

2.5 Linear Regression .. 18

2.6 Neural Networks.. 19

2.7 Optical Character Recognition ... 20

Chapter 3. Problem Statement .. 21

оΦм ¢ƘŜ ά[ŜŀƎǳŜ ƻŦ [ŜƎŜƴŘǎέ DŀƳŜ ... 21

3.2 Thesis Goals ... 25

3.3 Related Work... 26

Chapter 4. Our Approach... 27

4.1 Visual Cues, the Map System ... 27

4.2 Visual Cues, the View System ... 33

4.3 Decision Making .. 39

4.4 Action Mappings .. 45

4.5 Implementation ... 46

Chapter 5. Results ... 47

5.1 Screen Capture .. 47

8

5.2 Action Reels ... 52

5.3 Random Agent ... 58

5.4 Dummy Agent.. 58

5.5 Duelist Agent ... 59

5.6 Complete Agent ... 60

Chapter 6. Conclusions .. 61

6.1 Outcome ... 61

6.2 Discussion.. 62

6.3 Future Work .. 62

6.4 Lessons .. 63

Bibliography .. 65

Appendix I. User Guide .. 67

9

Table of Figures

CƛƎǳǊŜ мΦ ! ǎŎŜŜƴǎƘƻǘ ŦƻǊ ǘƘŜ ά[ŜŀƎǳŜ ƻŦ [ŜƎŜƴŘǎέ ƎŀƳŜ ... 12

Figure 2. Rgb color space [14] .. 16

Figure 3. Hsv color space [15] .. 16

Figure 4. Hsv histogram (showing the Hue and Value components) [17] 17

Figure 5. Equations for solving the linear regression problem .. 19

Figure 7. Main view ... 22

Figure 9. Non-lane terrain / "Jungle" ... 23

Figure 10. Lane view .. 23

Figure 13. Enemy buildings in "fog of war" .. 24

Figure 14. Initial Map Screenshot .. 27

Figure 15. Quantization of the map screenshot ... 28

Figure 16. The map after the removal of visible (orange) areas.. 28

Figure 17. Jungle monster histogram ... 30

Figure 18. Ally building histogram.. 30

Figure 19. Filtered Image (left) and Hough transform for minions (right) 31

Figure 21. Character prototype hsv vector ... 32

Figure 23. Complete detection of map features ... 33

Figure 25. Character health bar black and grey pixels .. 34

Figure 26. Building health bar black pixels ... 34

Figure 27. Background noise black pixels ... 34

Figure 29. Character prototype hsv histogram vector in the main view 36

Figure 31. Wall transformation from map to view ... 36

Figure 32. View of the walls ... 37

Figure 34. Sample money image extracted for optical character recognition 38

10

Figure 35. Separate digit images and variations ... 38

Figure 36. Example of scanlines used to identify the digits... 39

Figure 37. Strategic interest formation (left) and final interest point (right) 41

Figure 38. Scanbox feature detection in the minimap .. 48

Figure 39. Scanbox feature detection in the minimap(cont.) .. 48

Figure 40. Hough Transform (for both teams) .. 49

Figure 41. Edge detection on minions and characters .. 50

Figure 42. Walls (in grey) mapped from 2d data to 3d perspective 50

Figure 43. Minions (blue and red) , characters (yellow) and wall mappings (grey) 51

Figure 44. View element detection features .. 51

Figure 45. In-game shopping tab ... 53

Figure 46. Mood "interesting" ... 54

Figure 47. Mood "greedy" ... 54

Figure 48. Agent using the "Orb of Deception" skill ... 55

Figure 49. Agent prepares to "autoattack" the enemy minion ... 55

Figure 50. Mood "scared" .. 56

Figure 51. Mood "homesick" ... 56

Figure 52. View relocation based on perceived turret threat ... 57

Figure 53. Agent comparisons for 1 vs. 0 situations ... 59

11

Chapter 1. Introduction

1.1 Motivation

League of Legends [1] is a video game , where players assume the

roles of champions , which they fully control against other human or

computer controlled champions. Figure 1 shows a typical screenshot of

the game. The environment provides limited resources for which

players contest to get a gold advantage. It is thus categorized as a

multiplayer online battle arena (MOBA) video game, which is a

subgenre of the real time strategy genre [2] . Our goal in this thesis is

to create an autonomous agent for the League of Legends game.

Creating an agent for MOBA games is difficult because of the degree of

freedom in the player actions. It is widely accepted that a ran dom

agent , who selects actions randomly, in a MOBA game cannot even

reach mediocre level of play . In games like chess, the available actions

are discrete and limited in number , making any choice by the agent

seem humanlike, but unsophisticated. In MOBA gam es, the decision for

placement along with the combination of actions available to our

champion in real time make s it impossible to make naµve choices seem

intentional. Thus , the random agent is almost immediately classified as

naµve and inefficient.

Most o f the agents made by artificial intelligence (AI) enthusiasts rely

on acquiring information about the game state through interfaces that

can observe game variables in the memory. However, the information

stored in memory is not readily available to human p layers and some

of it is not accessible even through the gameôs interface. The

implementation of AI algorithms is easier and not too costly, when the

agent has to just act. But making an agent that has to perceive first

and then act, means we get closer to the real goal of AI. This is the

case with the League of Legends game, which does not provide an

open interface.

Creating an agent who detects the environment through a screenshot

of the entire game interface is the other part of the implementation

which faces an entire repertoire of problems on its own. League of

Legends is a 3d game with 2d interface elements. This makes it easier

to abstract the information, since most of i t lies in two dimensions and

the process of abstraction can be quite reliable. In formation which is

12

natively 3d is hard to acquire and even mapping the 2d abstract map

state that we have already acquired from the game minimap, into the

3d space o f the main view is challenging. Champions in proximity

cannot be reliably detected in two d imensions and we have to rely on

their 3d models to know who they are. Rotations and animations

increase the complexity of the task. Finally, when we get contradictory

information we have to find ways to resolve the dispute.

Figure 1. ! ǎŎŜŜƴǎƘƻǘ ŦƻǊ ǘƘŜ ά[ŜŀƎǳŜ ƻŦ [ŜƎŜƴŘǎέ ƎŀƳŜ

For example, there are Bogart problems, which contain two sets o f

images and there is a distinction to be made between the two sets .

The first set could contain small objects , while the second could

contai n large objects. Problem solving satisfaction aside, they also

provided an unsolved problem for artificial intelligence. There had been

many efforts to automate Bogart problem solving, but up to a point

they relied on humans to abstract the infor mation fro m the images,

before giving them to a computer. The computer would decide what

information was missing from one set , but was present in another.

Many considered this intervention cheating , since the users that

provided the information about the images were thought to put in

more information in the system than they got out, making solving the

problems trivial. Then, Harris Foundal is made Phaeaco for his PhD

thesis, and provided a way to solve the problems by just using the sets

of images instead [8] . This work was a great inspiration , because it is

in the true heart of AI . Vision is much more complex than any other

sense and the primary method for getting information about the world.

Adding perception through vis ion to the agent before he makes

13

decisions was an important step towards realizing a complete entity

that could be considered autonomous.

We wish to implement an a gent that can play the game of League of

Legends. To do so, he is provided wi th visual stimul i from the game

and tries to abstract visual cues from the acquired information. He

then processes that information to derive actions which are deemed to

bring the most utility , which are fed to the game using the keyboard

and the mouse . By using such a bi -directional interface that is able to

snapshot the entire game screen and simul ate user input, we create a

tru ly autonomous agent tha t behaves like a human. To this end , the

agent has to process the information of the minimap, which provides

the locations and existence of game entities, as wel l as the view, which

is a close -up on the three -dimensional structure of the game. If our

agent manages to utilize the tools given to produce more income than

his opponents , he will be able to get the advantage in the game

consistently. The main objective of the game, destroying the enemy

nexus, requires a lot of mini objectives to be completed first. After our

agent destroys the enemy nexus, the central building inside the enemy

camp, he wins the game.

1.2 Thesis Contribution

The way we tackle our problem involves the following steps. First , we

analyze the colors we see in the hsv color space. We use massive

parallelization to detect important lines in the view, and after removing

the unnecessary ones, we get to dete ct health bars, getting an

indication over where entities are in our view. Then we go to the map,

and use hue indications on the locations of buildings to see if they are

still enabled. We use the Hough transform method for detecting circles

with a specifi c radius to see where characters lie in our map. Then we

use hue histogram vectors to identify the char acters. We go back to

the view and we use hue histogram vectors to compare the champion

in our view to expected champion values to completely identify th em,

and after that we look at how much health and mana (used for

actions) they have. We get these values by letting the character walk

over terrain in different orientations and getting mean va lues . We use

a multilayered neural network on the images of dig its from our current

gold image to update our available gold. We use an imported library

for understanding what other players are trying to communicate to us

in the chat box. Finally, we make a bag of words system that

processes the language.

14

After we hav e our game state, we compare the state we got from the

map to the one we got from the view. We make appropriate changes

to reflect the fact that the view is a bit more reliable than the map, but

the map can still give information about things just outside our view.

In the action part of the agent, we form interest points that will guide

the character to the most interesting place s on the map. A behavioral

system based on a vector of ñfeelingsò, like ñgreedyò when minions are

nearby or ñscaredò when enemy turrets are in close proximity to our

character , guides which algorithms we should run in the current action

phase. The A* algorithm is used when the agent is ñscaredò. For

skillshots, which are skills that need to be directed in certain lines, we

use a meth od that minimizes the distance of minions from some line,

and then we use that line to shoot as many minions as possible.

Finally, we make a complicated scripted system of responses for

combinations of ñfeelingsò that will guide the champion to move,

attac k, use skills, explore , etc. All these responses are based on a

coordination -of -actions system that abstracts much functionality and

maps them directly to m ouse and keyboard actions. The J ava robot

library provides a way for these actions to be emulated im mediately

inside the game .

The original goal was two fold :

1. Create an agent better than the random agent in a 1 vs. 0 game.

2. Create an agent that can compete against the in -game beginner bot

agents that have access to the private game API.

The solutio n to the first goal was essentially trivial. As soon as the

agent had a basic repertoire of perceptions about the locations of

objects, he could easily move around the map and us e a ctions that

offer utility. The solution to the second goal was much harder. Since

the automated players we play ed against are at almost beginner

human level of play, once we were able to beat them , it showed that

our agent did not make naµve mistakes and could be confused for an

inexperienced human. However , even small mistakes c ould lead to

very bad performance , so rooting out a lot of sources of misplay was

essential. In conclusion, our efforts focus ed more on making an agent

that does not make bad decisions than an agent that makes really

good ones. This is why we omitted pure learning approaches and opted

for more standard AI approaches that could handle a small repertoire

of common situations. Our working hypothesis was that since these

situations are very frequent , exceptional knowledge of specific

circumstances and invent ion of solutions to those was not required.

15

Finally , we were able to test our agent in a fully automated

environment. We managed to win reliably against the beginner - level

agents implemented already in the game. Interestingly, to a human

observer the gameplay of our agent can be hardly distinguished from

that of an average human player.

1.3 Thesis Overview

The rest of the thesis is organized as follows. First ly, in Chapter 2 , we

cover the background necessary for understanding the employed

algorithms. Next, in Chapter 3 , we introduce the problem, showing

many parts of the game and providing evidence for the difficulty of the

problemôs multidimensional action space, as well as the probable

complications of the visual extraction methods. After that we introduce

related work in the field. We notice that there i s little work done in the

screen capture / action types of agents in virtual environments. In

Chapter 4 , we describe in detail our approach to the problem, both in

regards to visual process ing as well as decision making. Then, in

Chapter 5 , we provide a comparison of the agent to both the beginne r-

level automated agents implemented inside the game and the beginner

human players. Finally, Chapter 6 concludes our work and lists ideas

for future extensions.

16

Chapter 2. Background

2.1 Hsv Color Space

The hsv color space is one of the two most common representation s of

cylindrical co ordinates in color coding . It i s used in computer vision

because of its closeness to human perception of color. Instead of

describing the three components of color as amounts of red, green ,

and blue (rgb), as shown in Figure 2 , we pro vide three different

parameters: hue , which includes all the pure colors wi thout any kind of

tint or shade; saturation , which determines how vibrant the color

looks ; and , value , which corresponds t o how far from black the final

color is [9] (see Figure 3) .

Figure 2. Rgb color space [14]

Figure 3. Hsv color space [15]

17

2.2 Hough Transform

The Hough transform algorithm is an image perception algorithm for

the detection of specific features in an image, like lines or circles.

Normally, the original algorithm creates an accumulator space, with

the parameters of the shapes determining the dimensions of this

space. Every point that is detected increases the value of all poss ible

shapes that can produce it in the space [10][11] .

Points that are local maxima in our accumulator space represent

shapes with parameters determined by the location of the points. We

use a disk and circle detection algorithm without using size as a

parameter, only location. Thus, we can determine the position of large

circles or small disks of a certain color.

2.3 Histograms

A histogram is a representation of the distribution of some data. Color

histogram s are such representations where the data are the color

values of an image [10] . We can make a histogram for every

component in the hsv model and acquire information about the

distributions of hue, saturation and value inside an image, as shown in

Figure 4. To do this, we simply recognize the hsv components of each

pixel and count all the pixels that have the same hsv component. We

first decide the ranges where the component value of a pixel must fall

in to get accounted for by the counting process. Then each rangeôs

count is shown in the histogram. The hsv histogram that results from

this process contains very important information about the image and

can be used for classification.

Figure 4. Hsv histogram (showing the Hue and Value components) [17]

18

2.4 A* Algorithm

One of the mos t successful search algorithms for pathfinding is the A*

algorithm [5][6] . It uses a best - first search strategy to find a path

from the starting point to the end point. It is applied on a system of

interconnec ted nodes , namely a graph . If we can traverse between all

the connected nodes, with a movement cost provided by the weight on

those nodes, we can apply the algorithm to find the shortest path

between any two nodes in a very accurate and efficient way.

The algorithm maintains a set of open nodes, the set of nodes we have

not evaluated yet, which initially contains only the starting node. For

every neighbor node of our currently evaluated node, we calculate the

cost to reach it. It is equal to the sum of the past path -cost function

g(x) and the expected future path -cost function h(x). Function h (x)

heuristically estimates the remaining cost and has to be an admissible

heuristic, meaning it should never overestimate the distance between

the current node and th e target node. After we find the node that has

the lowest f(x) = g(x) + h(x) cost, we obtain our next node for

evaluation. Every node that has not been evaluated yet remains in the

open set. Every node that has been evaluated is put in the closed set.

When the end (target) node is popped for evaluation, the algorithm

terminates.

The A* algorithm keep s track of each nodeôs predecessor. After the

algorithm ends, the ending node will point to its predecessor, and so

on, u ntil we reach the starting node and this way we can get the full

path.

2.5 Linear Regression

We are given a set of points (x,y) that lie on the plane and we are

asked to find what the principal directions are, that is directions in

which the set of points varies the most [4] . To do this we used Deming

regression.

We start by realizing that the ñerrorsò between the points and our lines

have the same scaling in both x and y directions. That is, the vertical

and the horizontal axis have the same m easure. This leads to a delta

value of one. To find the best fit, we first calculate certain quantities,

because the solution can be expressed in terms of the second -degree

sample moments.

19

Solving for the three variables, we find the best fit for the line equation

 where we are expected to minimize the weighted sum

of squared residuals of the model (see Figure 5).

Figure 5. Equations for solving the linear regression problem

2.6 Neural Networks

In machine learning, neural networks are computational models that

are used for pattern recognition (see Figure 6) . They are represented

by a network of interconnected nodes called neurons which can

perform computations based on input [7] .

Figure 6. Neural network with three layers of neurons [16]

20

What has attracted the most interest in neural networks is the ability

to learn. In supervised learning, we provide a set of examples (x,y)

where x is the input vector and y is the expected response to the

input. The network adjusts the weights between the nodes so that it

can approximate the function f(x) -> y. Even if the input does not

conform to a specific example, the network will reach a solution b ased

on generalizations from the samples based on trained weights. To

actually train the network, we need an algorithm that will change the

weights according to what the input -output pairs are. In this case, we

used the resilient backpropagation algorithm [13] .

2.7 Optical Character Recognition

Optical character recognition (OCR) gives us the tools to extract

character information from visual images. The algorithm employed is

given an image containing a digit as input and has to decide which

digit it is [7] .

In the training phase, the algorithm uses a set of randomly generated

scanlines over the image that either cross or do not cross the digit. If a

line crosses about half the digits in the set, the line has a high entropy

value and can be used to differentiate between the digits. We keep a

small number of lines, the ones with the highest entropy, as features.

When the lines cross the digit we input 1 to the corr esponding input

node of the neural network that we will use to classify the digits. If the

line does not cross the digit we input 0 to the corresponding input

node.

After training the network for a large number of samples, we get the

classified digit in the output layer of the neural network.

21

Chapter 3. Problem Statement

3.1 The Ȱ,ÅÁÇÕÅ ÏÆ ,ÅÇÅÎÄÓȱ Game

In League of L egends [1] , the player starts the game at one side of the

map. Every time he has enough gold, the main currency of the game,

to buy items, he may do so whenever he arrives at the main platform

of his base. In every game there are two competing teams. These

teams are comprised of up to 5 players each, and their bases are

located in opposite c orners. Players have to defend their nexus , which

resides in their base, and destroy the enemy nexus to win the game.

At first it is impossible to actually reach the enemy nexus without

dying, creating what is known as the lane phase. There are three lanes

where champions fight for gold. Little entities called minions arrive at

the lane from each side. The players have to kill the minions at the last

moment to get the gold otherwise they get nothing. Turrets, buildings

made to protect the nexus, attack anyt hing in close proximity. Turrets

provide gold when they are destroyed, and they focus on minions if the

player is not aggressive towards enemy players beneath them. This

provides the main way to win, beating your lane opponent and after

that, destroy ing enough turrets to get to the enemy base. Buildings

called inhibitors have to be destroyed before the enemy nexus can be

attacked. Unlike turrets, they revive after some time, but when they

are destroyed, the ally nexus produces stronger minions. Finally , the re

are resources for gold between the lanes, in what is c alled the jungle.

The jungle is not used by the agents implemented by the game, so we

will not be using it either . However the jungle sometimes provides

faster paths to move from one point to the nex t.

Our agent has to buy items, go to his lane, fight with enemy

champions over minion gold, attack minions at the last moment to get

that gold and follow his team in team fights . He has to know how much

gold he has, where to be approximately so he can trav el there when it

is important, how to attack enemies by combining actions and where

the enemy and ally turrets are (when they are enabled). Another

feature which is not used very often is the chat box , where allies can

communicate with our agent to instruc t him to go to certain places.

Finally, he has to know when to recall if he is in low health and when

22

to look at enemy turrets by allo wing the view to not have h im at its

center.

To do so, he has access to a minimap which contains strategic

information abo ut the location of buildings, minion and champions. He

also has access to the view, which contains the landscape and the

objects that are placed in it in close view. We use both, as well as

some interface information to abstract the game state into our own

model.

Figure 7. Main view

The main view of the game (see Figure 7) shows features, such as the

minimap in the lower right, the skill section in the middle, and the

playerôs items to the left. This is the starting point for all champions

after the game begins or after they die and their death counter reaches

zero. After that, agents are free to roam around the map and acquire

gold. Our character is also visible, and we can see the health bar that

is associated with him . The green part shows our characterôs health,

while the blue part shows our characterôs mana, used for actions .

Figure 8 shows our agentôs health bar. We use the lines that separate

the health into parts to count how much health our character has.

Every vertica l black line corresponds to a 100 -value increment for our

current health.

Figure 8. Character health bar

23

Figure 9. Non-lane terrain / "Jungle"

Our map processing system provides clues as to which jungle monsters

are alive (see Figure 9) . Our character does n ot want to attack these

monsters and they are left for the player whose specialty is getting

those monsters in the jungle. However, we detect them both in our

minimap , to see if they are available for the taking, as well as in our

view, in the same way we view normal enemy minions. Since they are

not close to dying, our agent will not attack them.

Figure 10. Lane view

24

This is a view of the lane (see Figure 10) . Inside it, we see ally and

enemy minions fighting each other. A ñwaveò of minions grants

protection against certain champion skills as well as turrets, which

target minions first unless our agent provokes enemy champions

beneath them.

The health bars are surrounded by black lines which contain either blue

or red filling bas ed on whether the minion is an ally or an enemy of the

team (see Figure 11) .

I n this view (see Figure 1 2) , we see that ally turrets have health . The

buildings they protect have no health bars until the turrets are

destroyed . The nexus is prot ected until both turrets fall (see F igure

13).

Figure 13. Enemy buildings in "fog of war"

Figure 11. Minion health bars

Figure 12. Turret health bar

25

We can also see that e nemy buildings are hidden from the fog of war

(see Figure 13) . We can see whether they are there, but we cannot see

how much health they have. This is a problem when we want to see

things outside our characterôs range, since we do not know if the

building is covered in fog of war or is simply missing . Since detection is

mostly done through health bars, this becomes a har d problem that

persists through many feature detecti on algorithms .

3.2 Thesis Goals

What we are trying to implement runs across two dimensions. First we

want to detect the features accurately. This will provide the missing

API we need to connect our agen t to the game. To complete this

connection, we need to make sure the substrate is there to support our

actions inside the game. Thus we need to abstract the

keyboard/mouse input system, and create an accurate representation

of the game state based on the s creenshot.

After we do this, we have a small amount of resources, measured in

processing time, to actually implement our behavior. Our agent has to

obtain more gold than the opponent. To do so, he has to decide where

to be and what to do. Positioning is ma inly done through the minimap,

with clues as to the whereabouts of enemies or potential for gold.

Defending turrets against enemy champions and minion waves is also

important, because denying the enemy gold is a valid tactic.

We obtain gold mainly through last hitting enemy minions. This means

that our perception of the view must be very accurate and detect all

the important entities on the screen, as well as record statistics about

them. After we know how much health the enemy minions have, we

must organi ze our attacks so that we can last h it them to gain gold.

We need to coordinate a lot of actions , from attacking minions, to

going back to avoid sources of danger and engaging enemy

champions .

Finally , we would need to be able to understand communication from

teammates (i f not outright respond to them) and recognize the amount

of gold we currently have in order to buy items.

If we do all these , our agent will be able to get gold early in the game,

buy items and be a force to be reckoned with later in the g ame, where

killing enemy champions and destroying enemy buildings becomes a

priority. If the management of our position and gold is sufficient , we

will be able to win by des troying most of the enemy buildings (enemy

nexus included) and winning the game.

26

3.3 Related Work

A similar problem was presented at the IEEE Computer Intelligence

and Games conference, where a competition was held with the purpose

of creating a controller for the game ñMs. Pac Manò [3] .

The objective was again twofold, first use the screen capture method

to obtain the game state, and afterwards act in the best interest of the

agent. The same kind problems were present in this version of screen

capturing agents since firstly, non -determin ism and secondly, screen

capture not accurately reflecting the current game state, since some

time has already passed from the moment of the screen capture .

It is arguable that in ñLeague of Legendsò the game is deterministic,

however unlike ñMs. Pac Manñ where the game state is extracted

easily, in League of Legends we have non -determinism because of the

amount of visual information that cannot be extracted accurately.

Overlapping causes serious issues in determining the exact game

state , and that along with the delays in action, which can reach

important fractions of a second, become a similar source of

inefficiency.

The methods employed for screen capture in the game of ñMs. Pac

Manò were adequate to capture the entire game state in less than ten

milli seconds. We are not granted the same privileges since extraction

of an incomplete game state in ñLeague of Legendsò requires an

amount of milliseconds in the hundreds. Since required response times

are similar between the two games, we had to use the time allotted

more efficiently and without using too many resources.

Thus , in a way, this problem proves to be much more complex than

the ñMs. Pac Manò controller implementation and our agent has to

make tradeoffs between efficiency and resource management.

27

Chapter 4. Our Approach

4.1 Visual Cues, the Map System

Our starting point is the snapshot of the map view (see Figure 1 4).

Initially , we just want to get the rgb value of pixels inside the image

and transform it to a more useful form.

Figure 14. Initial Map Screenshot

The transformation fro m the rgb color space to the hsv color space is

essentially a mapping between red, green and blue components to

hue, saturation and value (brightness) components.

The rgb color space is co nvenient , because currently available

computer monitors produce light of different wavelength s to produce

any color on the screen. However , humans classify colors not based on

the se components , but based on the hue , which is the pure color

category, the sa tu ration , which shows how faded the color is , and

value , which indicates how bright it is.

We can clearly see that there are many colors to be used in the

recognition of map entities. We need to reduce the amount of

information in the map , so that the poss ibility that background noise

and variation will alter our results will be come insignificant.

28

Figure 15. Quantization of the map screenshot

After this initial phase, we quantize the results , so that the visual

information is cl earer (see Figure 1 5) . For every component of the hsv

color space , we quantize the range uniformly using a small set of

discrete value s (10 values for hue, 2 for saturation, 2 for value) .

We have already lost some of the available information, for example

wall placement, but the tradeoff is that we also gained clarity. It is also

clear where our agent has visibil ity on the map and where there is

visual obstruction , also known as ñfog of warò.

We already see that noise has entered the picture and that ther e is no

exact match for any kind of target image we need to detect. The goal

is not simply to match a small target image pixel for pixel, but rather

use a method that is resilient to background noise and variation.

First, we remove the orange parts inside the map , as they correspond

to visible areas . We can already see some degradation in the quality of

our championôs image, but we can also see that what remains is the

information that is important . At this point, image processing can begin

(see Figure 1 6) .

Figure 16. The map after the removal of visible (orange) areas

29

Since we do not want to lower the quality of our image, after det ecting

the location of features , we use the original , not the quantized, map to

detect the exact c olors in each one. In features that location is already

established, we use scan boxes on the original image to form

histograms . The term box is a bit misleading , since these mini images

take either square or circle shapes to accommodate different kinds of

features. They are taken from the original image of the map . The

histogra ms that are formed by these scan boxes are essentially vectors

of hue, saturation and value that we are able to use to determine

whether the location contains the target feature or n ot.

As already established, h istogram vectors are objects that contain the

hsv values of scan boxes on the minimap. We first examine

predetermined location s of a feature and then create a dis k on the

image that analyzes the pixels inside the disk . This pr ocess form s a

histogram vector , which is a cumulative count over all these pixels,

which can be used as a prototype or blueprint of the original feature.

Comparison takes places either on the entire vector or on part s of the

vector. If the image contains o ther features or the original feature we

are looking for is missing, the distance from the prototype histogram

(or parts of) becomes large and does not meet our thresholding

criteria. However, w hen these thresholding criteria are met, we update

the state t o reflect the fact that we have found the feature we were

looking for.

The scan area takes the shape of a disk , because most features have

complex shapes that generally fit inside the circle, meaning that , if

other pixels outside the disk were considered, they would just help to

introduce noise and variation in our sampled features, making

meaningful comparisons with the prototype vector difficult. These

prototypes are sampled in -game and serve as representatives of the

features they are taken from. The histogram vectors shown in the

figures below are concatenated, meaning that each component (hue,

saturation and value) is represented by one third of the vector image.

The coloring scheme helps understand what each component

represents inside the vector. An example of a histogram vector is

shown in Figure 1 7.

Detection of buildings and jungle monsters

We begin our detection of buildings and jungle monsters by using the

histograms generated by the disk -shaped scan boxes on preset

locations. We select cert ain ranges inside the histogram and use them

for thresholding. If the count of pixels inside that range surpasses a

30

certain value, we consider it a valid detection of the feature. Buildings

come in two varieties. Enemy buildings are mainly purple and allied

bu ildings are mainly blue. We use a high value in the hue section of

the histogram that represents these colors to identify the buildings

correctly. For the jungle, we use the color orange to identify the jungle

minions. A threshold was again used for this r ange of the hue

histogram to obtain a detection criterion. A specific exception is two

jungle monsters (dragon and baron) in the main diagonal, which a re

detected b y using the same technique used for character identification.

This is explained in detail in the ñIdentifying charactersò section below.

The prototype histogram vectors of jungle monsters and ally buildings

are shown in Figure 17 and Figure 18 respectively.

Figure 17. Jungle monster histogram

Figure 18. Ally building histogram

Hough Transform for minion disks

Minions on the map appear as small cyan (allied) and red (enemy)

disks. Therefore, w e first filter the image to keep only the cyan color

and apply Hough transform to detect such cyan disks (see Figure 19) .

The same procedure is repeated for the red disks. The accumulator

space for the transformation is for disk s of specific radius , but of

unknown location. This means that we are looking for (x,y) pairs that

signify the center of our d isk. For every point that is potentially a

center of a disk that can produce the pixel we acquired from the

minion image , we add a unit to our accumulator space on the diskôs

central location . Since the centers of all disks that can produce our

point form a disk, we simply add a unit disk centered on our current

point to the accumulator. In the end, we are left with points of high

value that represent disk center s and background noise is filtered out.

As shown in Figure 19 (left), the filtered image contai ns only cyan

pixels. After acquiring this filtered image , we perform the disk Hough

transfo rm and produce the resulting Hough transform space (see

Figure 19, right). We can see that the characterôs circle is visible, but

31

does not have a high enough value. We can clearly see that the minion

gatherings have high values and can be detected easily. Since we

know the radius of the minion disk, after a valid detection we remove

the peaks that occur inside the area of the detected disk s. This means

that inside eve ry minion gathering we f ind around 4 -5 disk centers.

Using this information, we can update our map state accordingly.

Figure 19. Filtered Image (left) and Hough transform for minions (right)

Ho ugh Transform for character circles

To perform the Hough transform for character circles, we again process

the cyan or red filtered image . We use a negative edge mask to detect

where the image pixels go from cyan values to other values . After we

apply the mask , we get the result shown in Figure 20 , on the left, and

we extract only the pixels in red color (edges) . Now we can use these

pixels to apply the Hough transform method for circle detection. We

simply have to calculate , for each pixel , the circles that are able to

produce it. The Hough transform again has two parameters, (x,y),

since the center of the circle is unknown , but th e radius is known .

Figure 20. Processed Image (left) and Hough transform for characters (right)

32

Since the center of the circle produces all the points, we get the

correct location of the circle in the accumulation plane (see Figure 20 ,

right) . All the false peaks are created by circle parts formed by minions

that simply do not add up. After we detect the ci rcle we remove the

center and its neighborhood, so that we do not detect the same circle

twice. This procedure is repeated for detect ing the red (enemy) circles.

Id entifying characters

Figure 21. Character prototype hsv vector

Identifying the characters is done through a prototype hsv histogram

(see Figure 21) . We compare the Manhattan distance in the vecto r

space between the currently perceived histogram in every component

with the prototype . This vector was taken from a disk -shaped scan box

which was applied on the resulting circle centers of the Hough

Transform method.

Another way to detect the character s inside the map is using

correlation hue vectors (see Figure 22). Every entry in the 12x12

matrix shown in the figure represents the correlation between hue

values over neighboring pixels inside the scan disk. Each entry

corresponds to jump ing from a cert ain hue value to another hue value

when moving from some pixel to the neighboring pixels on the right

and bottom. Columns refer to the hue value of the original pixel , while

rows refer to the hue value of the destination pixel. The prototype

correlation ma trix of a character is matched against the correlation

matrix of any candidate character.

This way we can differentiate surfaces of many consistent fi lling s from

surfaces with alternating regions of colors, providing means for more

Figure 22. Accumulating correlation matrix

33

accurate charac ter identification. These two identification methods are

used jointly to ensure that character identification is valid. Sin ce they

are not completely dependent, their combination gives greater

detection accuracy . In this case, t he whole is greater than the sum of

its parts .

Figure 23. Complete detection of map features

In summary, d etection of non -colliding features is 100% accurate , as

shown in Figure 23, where all detected features of the map are marked

using colored boxes .

4.2 Visual Cues, the View System

The actual in -game view provides enough information about the

environment through a user interface filled with health bars and other

statistics (see Figure 24) .

After we focus our efforts on detecti ng horizontal lines consisting of

black pixels, we acquire the location of important features. We need to

preprocess the main view image to infer the locations of entities on the

Figure 24. Main game view with entities visible

Enemy minions

Ally minions

Enemy inhibitor building

Enemy turret building

Ally inhibitor building

Ally character

View

Jungle monster

Jungle dragon monster

Ally turret building

34

map. These include the character health bar and building or

minion/jungle hea lth bars , and unfortu nately background noise as well .

We process the main view and keep only the black pixels. For the

cha racter health bar, which does not contain only black pixels , we also

keep the grey pixels of certain hsv values. What we get from this

filtering of the main view image is enough to locate all the necessary

entities for robust recognition from the view. Figures 25, 26 and 27

show the results of this filtering.

Figure 25. Character health bar black and grey pixels

Figure 26. Building health bar black pixels

Figure 27. Background noise black pixels

It is clear that there is a lot of noise surrounding the locations of

important features and we have to remove it. We detect character

health bars (see Figure 25) and building health bars (see Figure 26).

Background noise is also detected , but is ignored (see Figure 27).

To actually detect the lines, we need to form a mask and a threshold

that will filter out backgroun d details. First , we obtain an image where

35

every pixel is 1 , if it is black , and 0 , otherwise. We use the mask

shown in Figure 28, which is a horizontal line detection mask, to form

an image that is thresholded for values larger than zero to produce the

final image , which contains horizontal line segments from health bars

only . Even the black filling inside a deple ted health bar will not show

up , which is precisely what we wanted . Afterwards, we detect lines of a

certain length that are continuous . The rema ining line segments are

classified as entity health bars.

For minion health bars, we remove duplicate lines that are spaced

within a certain distance of each other and add to the collection of

double lines that make up minion entities.

For character health bars , we first detect t he health bar and count the

disc ontinuations that reflect a one -hundred value increment on current

health. We also estimate the maximum amount of mana which enables

actions based on character level and we get a percentage o f the blue

line length of the mana ba r, enabling us to estimate the current mana.

The character below a health bar in the main view is detected based on

prototype hsv histograms. We combine the hue, saturation and value

vectors into one big description vector a nd compare with our

character ôs prototype vector (see Figure 29) . The scan box used to

form the histogram vector is of square shape, so that the character

can fit most of his pixels inside it. Round scan boxes would take parts

from the health bar and evalu ate them as if they were character pixels ,

so we do not use them . Before forming the hsv histogram vector, we

eliminate background pixels based on thresholding over saturation and

brightness values. The resulting vectors are normalized based on the

number of pixels we actually used to form them . This is necessary ,

because , while the amount of pixels inside a scan box in the map view

is always the same, in the main view, by removing ex cess pixels from

the background and based on character rotation, we obtain a variable

Figure 28. Mask for line detection

36

number of pixels from the character ôs image inside the scan box (see

Figure 30 ï eliminated background pixels are shown in black) .

To actually compare the hsv vector to our prototype vector, we weigh

the components, so that differences betwee n the different components

would not affect the ñdistanceò between the sample image and the

prototype in the same way. Value entries are the most important

component, so they are weighted by a factor of 3, saturation entries

are weighted by a factor of 2 and hue entries are weighted by a factor

of 1. Since this weighting was implemented before creating the

prototypes, we can be sure that the same weights apply to the original

prototype vectors.

Figure 29. Character prototype hsv histogram vector in the main view

We now turn our attention to the problem of finding where walls are.

Figure 31 is a mosaic representation of map and view features. The

walls are projected from a two -dimensional stored wall map image to

our 3d view. Features detected inside the main view are placed without

relocating them to a new place, since their original places are correct.

Figure 31. Wall transformation from map to view

Figure 30. Image for hsv vector extraction

37

Figure 32. View of the walls

Notice that the walls in Figure 31 (the grey dots) correspond to the

actual walls in Figure 32 , so that now our character may use manual

pathfinding. Note the images in Figures 31 and 32 are not

synchronized; the minions (blue dots) have moved to the right in

Figure 32, which is a later snapshot.

A transformation from a 2d image to a 3d perspective view is required.

For this transformation, we first observe that the horizontal location

affects how much stretching and shearing occurs while moving

ve rtically. At the center there is no horizontal transformation, but as

we move to wards the sides, and closing in on the top of the sc reen,

our location gets dragged towards the center.

By using observed and expected values for certain fixed points , we

dete rmine the values of constants necessary for the transformation to

be a good approximation . To do this we use points that have the same

value in one dimension , but a different value in another (for example,

same x , but different y) . The dimensions do not in teract with each

other , since we have a sum of products of at most one unknown

dimension in each . Thus we obtain the correct values for the constants .

The walls are available in the minimap , but are not clearly defined. To

form the stored wall map, we star t with an image of the minimap and

we manually marked black pixels to represent walls . We also manually

inserted white pixels to erase black pixels already in the map that were

not part of walls (see Figure 33) . Our software detects where the black

pixels lie in this image and places walls in those locations. Finally , we

update the view state to reflect the walls inside our 3d view from the

2d to 3d mapping of the imageôs wall data.

38

Money OCR recognition

In order to observe the amount of money in the possession of our

agent, we have to use optical character recognition on the image that

represents the amount of gold we have. An example of such an image

is shown in Figure 34 .

Figure 34. Sample money image extracted for optical character recognition

In order to extract the characters, we use a library that separates

characters ef ficiently. Unfortunately, the available built - in function s to

actually identify the characters were suffering from accuracy issues.

Thus, we trai ned a neural network that would identify singular digits

from their images with a high degree of accuracy. The digits

themselves show enough variation to confuse naµve methods for

character extraction (see Figure 35) .

Figure 35. Separate digit images and variations

We train a multi - layer neural network based on the E ncog J ava library

to make the detection of digits accurate. Instead of using pixel values

inside the images (which would require 400 input neurons for a 20x20

grid) we use a line - intersection method [7] . Initially, we produce a lot

of scan lines on the images randomly. Then we evaluate how many of

those scan lines were important based on a measure of entropy. If a

scanline is touching a digit and is crossing around half of the digits, its

entropy will be at approximately its maximum value and that scanline

Figure 33. Wall data in map image

39

can be used as an input feature in the neural network for digit

detection. If a scanline is crossi ng either al most all digits or none, it

has low entropy and we cannot use it to differentiate between digits. A

small number of scan lines are kept to form a set of features used to

train an artificial neural network on the samples of digits (see Figure

36 , unique color for eve ry scanline) .

Figure 36. Example of scanlines used to identify the digits.

After enough variation samples were accounted for, the final

classification was reliable and accurate. The neural network used three

layers, one for input , one for output and a hidden middle layer using

double the number of neurons of the input layer . After training the

network using back -propagation , we used it on the cropped digit

images to properly classify the digits. We obtained the final amount of

gol d by multiplying each recognized digit with a proper power of ten.

Since sometimes the OCR library omits detection of certain digits, we

do not have a completely accurate gold detector, however this event is

rare enough that every time our agent is trying to calculate his sum

(aro und 5 -6 times in every game) , he wi ll be able to calculate the

amount of money reliably.

 Skill Upgrade

We use the same methods that we used to detect jungle and building

entities to detect whether a skill upgrade button exists. These buttons

have a fixed location and appear only when our character is able to

upgrade his skills . This way we can keep track of our characterôs

current level, which affects a number of game statistics, thus enabling

us to accurately estimate character i nformation , like maximum amount

of health or mana.

4.3 Decision Making

Items

Item selection is linear based on the amount of money we have. Every

time our agent visits the nexus, he can buy more items based on his

current gold. He spends the maximum amo unt of gold he can to buy

the items in the list. Every item bought is subtracted in gold value from

40

our total amount of gold. We stop buying items when we reach a total

of 6 core items and thereôs no more space for purchases. Sometimes

the agent sells star ting items (currently, without further modification,

just the ñDoranôs ringò item) to make space for more important late -

game items.

Cooldowns

We have a specific order for upgrading skills. After our game state is

informing us that thereôs a skill upgrade to be made, we press the right

combination of keys to upgrade our skill. If this was the first upgrade

of the skill, it enables us to use it for the first time. Another system ,

the cooldown calculator, is able to tell us which skills are available due

to being upgraded. Using those skills locks them for a certain duration.

We use the systemôs clock to measure the exact time it takes for a

cooldown to end . After that time has elapsed, the skills are available

for use again. An understanding of our opportuni ties for aggression is

based on the exact amount of skills that are free of cooldowns. This

proves really important when we try to remove the enemy champion

from the lane. Thus, cooldowns are a measure of aggression and used

in the ñaggressiveò mood state.

Strategist

The strategist is responsible for the formation and evaluation of

interesting points in the minimap. I t is tasked with choices pertaining

to strategy .

The game itself forces the champions to have a starting laning phase,

where they stay betwee n enemy and ally turrets and fight for gold. Our

champion ignores other lanes when the game starts, and after the first

lane turret has been destroyed , becomes free to roam around the map.

The creation of interest points depends on our observations of the map

state. Collisions of minions, team fights , enemy characters, minion

waves pushing turrets and even chat commands allow for the

development of points in a list.

For every such point, the distance from our character is deducted from

the initial interest value (which differs based on the event), as is the

distance from the center of operation s (which is the lane to which we

have been assigne d to) . Aft er the laning phase is over, it is only the

distance from our champion that is accounted for. This permits free

late -game movement to interest points.

41

When inner turrets near the nexus are attacked they get huge priority

bonuses. But the most common event that our character is motivated

towards following is minion wave collisions, where ally and enemy

minions a re in close proximity.

After the list of interest points has been created, we evaluate the

interest point s to find the one that is the most important by comparing

its priority value against the other ones . This is sent as a signal of

where to be in the moo d system.

Figure 37. Strategic interest formation (left) and final interest point (right)

In Figure 37 we see the strategist in action. In the left part of the

figure, we see the many auxiliary points that help with the formatio n of

interest points. Green and orange dots are buildings while cyan and

pink dots are minions. Depending on the kind of event that happens on

a location we assign a priority to the interest points formed. The final

points can be seen in the right part of the figure, with the yellow dot

representing our character.

Mood

The mood system is a complicated system of behavio rs centered on a

theme. This will occur once for every perception -action cycle . This

system decides to use only a small set of decision algor ithms for every

kind of targeted mood. We get around three cycles every second

meaning we couldnôt manage a system that globally estimated every

kind of decision simultaneously. Since we can make around three

actions every second, we get ample of time to s witch our behavior

phase and behave differently. This proves effective and versatile in

dealing with changing environmental conditions. The mood is

developed based on our current estimates of the game state. Minions ,

turrets and enemy characters make our a gent ñScaredò. If the view

cannot detect our controlled champion, the mo od becomes ñConfusedò.

42

If there is an enemy turret that we cannot really see but is close

enough to our champion , the agent becomes ñCuriousò. Enemy

characters make the agent ñAggressiveò while enemy minions make

him ñGreedyò. If the agent has to go back he becomes ñHomesickò.

Finally, if an interest point exists, the agent is ñInterestedò. This

system decides which kind of algorithms wi ll run to determine our

actions, based on the exac t amounts of all these mood types that are

competing for control.

After the mood has been developed , a comparison between different

moods with different priorities ensures that the proper action type will

be taken. However, even when we know the approximat e action

strategy the agent should be utilizing we still have to define a complex

behavior based on the game state.

Mood state: Confused

The agent has use this action cycle to relocate himself. He centers the

view on himself by using the spacebar key and c ontinues to the next

cycle. We donôt want to detect anything else or take away precious

processing time from our next cycle, so the visual perception process

ends immediately.

Mood state: Curious

The agent is close to a turret that is not hidden by the fog of war

(turrets outside ally minion/champion ranges are not available for

detection from our view systems). We move the view towards the

turret and change the state so the information is updated based on

what we saw. This means that the game state will be able to affect

what the visual phase of the next cycle will be able to perceive. This is

not unlike eye movement where we notice something interesting in a

place we do not currently see and move our view to perceive the point

of interest.

Mood state: Home sick

The agent is low in health and has no other interest. He goes back to

the nearest turret to recall back to the base. This is possible because

we can estimate which allied turret is the closest to our agent and start

recalling there. To accurately dete rmine which places are deemed safe

we use the map state.

Mood state: Interested

43

The agent has located a place of high interest. He wants to take an

action to move to that place. The game already provides a robust

algorithm for path formation from any point to any other. Our agent

simply right clicks on the minimap to the place where he wa nts to be

at. This is the mood of least priority and is only activated if other

moods are inactive . To actually determine which place is of highest

interest, we first form every kind of interest point on the minimap.

These include but are not limited by minion collisions, character

collisions, turrets being attacked by minion waves, turrets being

attacked by characters, interest points created by chat commands and

lane point s (which are created after we choose the lane we want to

play at).

Mood state: Greedy

When there are enemy minions on the map, the agent becomes

ñgreedyò. Since minions are the most important way of acquiring gold

our agent is focused on last hitting as m any as possible. Enemy

minions have to die by our agent and not some other cause, to give

their gold to him .

Our agent performs corrections on his position based on his ally minion

wave (since being outside it means he can be attacked by enemy

minions). If a low health target is available, the agent moves towards

it. When an enemy minion is about to die, our agent attacks it to get

its gold.

Sometimes the agent has to use skills (rarely because the skills require

an expendable resource, mana, and then have a cooldown period

where they cannot be used again) to destroy the enemy minion wave

before it reaches our turret. Minion waves that reach a turret are

quickly eradicated by powerful turret attacks, denying our agent gold.

Our agentôs most promising way of dealing with an enemy minion

wave is using a skillshot. A skill is called a skillshot if it is a projectile

shot that takes skill to aim properly. When there is great variance in

enemy minion location, determining the best line for a shot can be

difficult . Also, our champion has to target a point, so to make sure the

skill follows a specific line the starting point has to be on the line too.

Our agent calculates the best line that fits the enemy minionsô

locations and then follows the shortest path to it. After he arrives at his

starting point , he uses his skillshot towards a point o n the line that is

further away , towards the minion wave. To do this, we perform a

regression fit of a straight line to the se t of coordinates of the minions

44

by using the Deming regression model. If enough minions are visible

inside the view, and we have enough mana, we decide to use the orb

attack to kill or lower the health of as many minions as possible.

Mood state: Scared

The agent is trying to find escape routes from sources of danger. We

have used a mapping from two -dimensional wall data to three -

dimensional obstacles. Thus, we have access to obstacle information as

well as the sources of danger.

We use the A* pathfinding algorithm to follow the path of least danger.

We mak e a grid of nodes where every node that is a viable path is

connected. The weight of the path is changed to reflect the fact that

moving close to danger sources is harder than moving away from

them. Thus danger sources like turrets radiate their weights fi rst based

on distance , and when the A* algorithm creates the starting nodes it

applies the ñdanger proximityò value to the distance between nodes.

We find the fastest way to move from our current location to a safe

side of the screen which lies near an all y turret by using the results of

the algorithm . Doing so produces safe paths that do not follow the

normal pathfinding provided by the game (which only takes distance in

consideration) but also a utility cost modification that weights the

danger of a path against the shortness of its length.

After we find the proper path, we follow part of it towards the edge of

our view . We use the Manhattan distance to calculate the admissible

heuristic of the A* algorithm, since we only make horizontal and

vertical movem ents. This means that our heuristic will never

overestimate the distance, since it represents the minimum distance

possible.

Mood state: Aggressive

The agent has calculated whether he is in a winning or losing situati on

against a close opponent. He has decided that he wants to engage the

opponent. Either he is a little aggressive and just wants to ñpokeò the

enemy or he wants to go for a ñkillò. Poking uses a minimal set of

actions that do not expend a lot of the agentôs resources. Trying to kill

the enemy player results in loss of resources and is to be made after

we can predict that there is a great chance it will lead to a kill.

The cooldown calculator gives a rough es timate of what our agent can

do, and by comparing health and cooldowns we can approxima te our

chances for winning in a one vs one situation. A team fighting potential

45

module also calculates whether we should engage in a larger fight that

includes more than two champions fighting.

After all these imply the opportunity for attack, our agent em ploys a

coordinated attack against the enemy. This attack puts certain skills on

cooldowns by using them to attack an enemy character. After the

coordinated attack is over our agent goes back to his ally minion wave

because of the lack of cooldowns to use in attacks .

Chat Commands

We use a simple bag -of -words model to classify s entences based on

their meaning [1 2] . Most of the work focuses on how to be able to

respond in game, al though there is no functionality to s upport

transforming our answer s trings into a series of keystrokes. However,

certain mention s of objectives do interact with the Strategist to create

new interest points for our agent, like the dragon, the blue buff or the

baron jungle monsters.

For t he model itself, we create mappings between certain words and a

standard list of word s. This standard list also creates mapping s

between the few words in the dictionary with concepts.

Then we get an activation system that determines the way concepts

intera ct with each other, activating more if they are related positively

and less if they are related negatively. Finally, we check the activation

status of our output concepts which determine what behavior our

agents should have.

In case there is a chat command that says we should go to an

objective, our agent is able to form an interest point in the minimap

that will guide him there strategically. If he has no interest in pursuin g

something inside the view, he is inclined to follow the objective as

commanded fr om an ally through chat.

Only one response is an actual interaction between the agentôs actions

and the chat, while others are simply ways for the agent to

communicate in future implementations. The agent understands and

forms a response without actually t yping it, since we do not want to

spend cycles typing instead of interacting with our game environment.

4.4 Action Mappings

To output actions to the game, our agent has to make simple output

actions that the game understands like moving the mouse or pres sing

46

keys. To do this, we rely on an abstraction of the output system, which

assigns general commands, like moving the view or clicking on a point

of the map, to actual movements and clicks on the lowest level of

abstraction .

To create input our agent mai ntains a queue of commands that are to

be executed in priority. After we determine the abstract action we want

to perform, like an exploration move ment to Point a, the system first

determines what mouse and keyboard actions are necessary. After

determining this middle level representation of keyboard and mouse

inputs, we convert the input to the lowest level of input. For example

the action of moving the mouse and then pressing ñQò becomes a

mouse movement to a specific point, a ñQò key press and a ñQò key

release for a certain duration. After this is done, we consider the action

completed and we can follow with another action.

4.5 Implementation

The following is a list of specific implementation details and imported

libraries neces sary for implementing th e agent. The libraries are open

source and free to use.

- The neural network we created used 50 input neurons and 100

hidden neurons to calculate the result in the 10 output neurons .

- We used the encog neural network library for creating and

training the neu ral network for optical character recognition.

- We used the JavaOcr library for extracting characters and

separating them in different image files .

- We used the Tesseract java library for determining the content

of chat images , where players communicate wi th each other

inside the game .

47

Chapter 5. Results

First ly, we want to determine the accuracy of our visual systems. They

prove robust enough to be used in isolation as an auxiliary api that the

agent can use to acquire utility from the environmen t.

Secondly, we want to see if the agent can survive in the environment

and have a decent performance. Verifying the exact effectiveness of

our whole implementation will depend on comparisons to new human

players , beginner bot agents as well as dummy ñrandomò agents.

If we explore the idea of a random agent inside the game we soon

come to find that it is going against our intuition of what we should

compare against. If we take chess as an example, a random agent

would produce meaningful choices every once in a while, making

seemingly ignorant moves when something is obvious to a human

player but completely ignored by the agent. This is not the case with

League of Legends. Coordinating even a simple action proves much too

difficult for a random agent. The d egree of freedom is so vast that any

kind of randomness in our agent proves detrimental to his success in

the game.

5.1 Screen Capture

It was essential for the agent to be able to capture the screenôs

elements with great accuracy. The second most import ant source for

information is the mini -map. When the different elements of the

minimap do not collide, we get 100% accuracy in detecting them. This

holds true even when the box surrounding the view (which is a white

parallelogram) alter s the values of the elements enough to distort their

histograms . Consequently , wherever we look non -colliding map

elements will be detected with complete accurac y.

Since features can possibly collide, we made sure to use techniques

that are not susceptible to variation and di stortion of the original

features . When minions pass through the terrain and meet turrets, the

turrets are for the most part recognized without problems. However,

48

when the character almost com pletely obscures the turret, it is hard to

recognize it and it b ecomes deactivated . This is important because it

shows that we do not get false positives if the element significantly

changes.

Figure 38. Scanbox feature detection in the minimap

As we see in Figure 38 , we get black and white b oxes for turrets, which

have all been recognized except the one that collides with our

character , grey boxes for inhibitor buildings, orange ones for the jungle

(as well as green for the dragon and baron jungle monsters), and

finally cyan and pink for the minion waves. The minion waves are

composed of many little disks that represent minions. Our view is

shown in yellow, where the left , middle and right part have been

recognized completely. The character is shown in blue, and enemy

characters, if any, would be shown in red. To see how we handle false

positives, we take another screenshot when some features are

missing.

Figure 39. Scanbox feature detection in the minimap(cont.)

