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Abstract. This paper adopts a Bayesian approach for finding top recommenda-
tions. The approach is entirely personalized, and consists of learning a utility
function over user preferences via employing a sampling-based, non-intrusive
preference elicitation framework. We explicitly model the uncertainty over the
utility function and learn it through passive user feedback, provided in the form
of clicks on previously recommended items. The utility function is a linear com-
bination of weighted features, and beliefs are maintained using a Markov Chain
Monte Carlo algorithm. Our approach overcomes the problem of having conflict-
ing user constraints by identifying a convex region within a user’s preferences
model. Additionally, it handles situations where not enough data about the user
is available, by exploiting the information from clusters of (feature) weight vec-
tors created by observing other users’ behavior. We evaluate our system’s perfor-
mance by applying it in the online hotel booking recommendations domain using
a real-world dataset, with very encouraging results.

Keywords: Adaptation and Learning · Recommender Systems

1 Introduction

Personalized recommender systems aim to help users access and retrieve relevant infor-
mation or items from large collections, by automatically finding and suggesting prod-
ucts or services of potential interest [20]. User preferences could be self-contradicting;
are often next to impossible for the user to specify; and are notoriously difficult to infer,
while doing so often requires a tedious elicitation process relying on evidence of others’
behavior [15, 20].

In this work we propose a complete model for learning the user preferences and use
it to make targeted recommendations. Our system: (a) does not rely on user-specified
hard constraints; and (b) does not require an explicit user preferences elicitation process:
rather, it learns a user model through passive observation of her actions. In particular,
we follow a Bayesian approach that operates as follows. We model the user utility over
items as a linear function of the item features, governed by a weight vector w. Our goal
is to learn this vector in order to provide personalized recommendations to our user. We
capture the uncertainty of the weight vector w, which parameterize the utility function,
through a distribution Pw over the space of possible weight vectors.

Every time a user enters our system, we propose a number of items that comply
with feedback we had received from her in previous interactions. The feedback is in the
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form of clicks, and it can be translated to preferences. This feedback could in princi-
ple be used to update the prior weight distribution via Bayes rule. However, even for
the simplest case of a uniform prior, the posterior could become very complex [19].
Thus, we adopt a different approach: instead of trying to refit the prior through an al-
gorithm (such as Expectation-Maximization (EM) [4]), we keep the constraints infered
from previous user interactions, and employ a Markov Chain Monte Carlo (MCMC)
algorithm (specifically, Metropolis-Hastings [14]), in order to condition the prior and
derive efficiently samples from the posterior [2, 8, 25].

In our work, we show how to find effectively and efficiently a ”good” starting point
for the MCMC algorithm, a challenging task in a multidimensional space like ours.
Moreover, we take into consideration the problem of having conflicting constraints.
This situation could be encountered when the user changes radically her preferences,
or if we have gathered too many constraints and we could not find a weight vector
that could satisfy all of them at the same time. We overcome this by using a linear
programming algorithm that finds, effectively and efficiently, a convex region of all the
possible weight vectors that satisfy all the user constraints. In addition, we show that the
problem of having insufficient information about users can be alleviated by performing
clustering over other users’ preferred items, and exploiting the clusters to recommend
items to the “high uncertainty” users.

As explained above, we have no need to set questions to the user, nor use textual
information regarding an item in order to elicit user preferences. Moreover, we do not
rely on any user ratings of the recommended items. We tested our system using a real
world dataset that consist of 5000 hotels, each of which is being characterized by five
main features; and exploited our knowledge of the preferences of synthetic users we
constructed, in order to verify the effectiveness of our algorithm. Our simulations in-
deed confirm that the approach is able to quickly focus on a users’ true preferences,
and produce top personalized recommendations when operatiing in a realistically large
recommendations space.

2 Background and Related Work

MCMC techniques estimate by simulation the expectation of a statistic in a complex
model. Successive random selections form a Markov chain, the stationary distribution
of which is the target distribution. Thus, MCMC is particularly useful for the estimation
of posterior distributions in complex Bayesian models like ours [1].

Our work was to some extent inspired by work on inverse reinforcement learning
(IRL). The usual reinforcement learning (RL) problem is concerned with how agents
ought to take actions in an environment so as to maximize some notion of cumulative
reward, while the goal of IRL is to learn the model’s reward function (which guides op-
timal behaviour). For instance, [18] views agent decisions as a set of linear constraints
on the space of possible reward functions. Bayesian IRL [19], on the other hand, as-
sumes that a distribution over possible reword functions exists and has to be inferred.
In our case, the goal is also to learn the utility each item has for a user. We model this
function as being linearly additive, governed by a weight vector. Conceptually, there-
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fore, our approach is similar to IRL; however, we do not use an MDP to model our
problem, as we do not explicitly view it as a sequential decision making one.

2.1 Related Work

In a recent work focused on the movies’ recommendations domain, Tripolitakis and
Chalkiadakis [24] proposed the use of probabilistic topic modeling algorithms to learn
user preferences.That work modeled items and users as mixtures of latent topics, and
was to an extent able to capture changes in user tastes or mood shifts, via the incor-
poration of the “Win Or Learn Fast” principle [6] found in the reinforcement learning
literature. However, their work relies on “crowdsourced” or otherwise gathered tex-
tual information about the items (movies in their case); and it was able to exhibit only
marginal improvement in recommendations’ performance, when tested against other
algorithms used in the movie recommendations literature. 1 By contrast, our work here
does not attempt to build preference models relying on crowdsourced information about
the items, and uses a rather simple exploration technique. Still, via the combination of
MCMC and linear programming techniques, it is able to achieve an outstanding recom-
mendations performance, as demonstrated in our experiments.

Also recently, Nasery et al. [17] present a recommender that introduces a novel
prediction model that generates item recommendations using a combination of feature-
based and item based preferences. More specifically, they propose a novel matrix fac-
torization method (called FPMF), which incorporates user feature preferences to predict
user likes, and evaluate it in the movie recommendations domain.

There is naturally much previous work on hotel or travel booking recommenders.
However, these typically involve lengthy preference elicitation processes; require the
use of textual information; or are “collaborative filtering” in nature, relying on choices
made by other users in the past. For instance, Dong and Smyth [12] propose a personal-
ized hotel booking recommendation system. In their work, however, they are attempting
to mine features from the user reviews in order to create a user profile and exploit it to
recommend items that comply with that information. Then, [22] considers an interactive
way of ranking travel packages. However, for each iteration, the user is asked to rank a
set of items, and the system requires several iterations of explicit preference elicitation
before providing recommendations to the user.

One interesting work is that of [8], which considers the broad task of predicting
the future decisions of an agent based on her past decisions. To account for the un-
certainty regarding the agent’s utility function, the authors consider the utility to be a
random quantity that is governed by a prior probability distribution. When a new agent
is encountered, this estimate serves as a prior distribution over her utility function. The
constraints implied by the agent’s observed choices are then used to condition the prior,
obtaining a posterior distribution through an MCMC algorithm, as we do here.

The work whose model we adopt to a large extent in this paper, however, is that
of [25], which generates top-k packages for users by capturing personalized preferences

1 That was also the case for the work of [3], which was modeling items and users as multivariate
normals; like [24], and in contrast to our work here, [3] required users to actually rate a (small)
number of items.
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over packages using a linear utility function, which the system learns through feedback
provided by the user. In their work, the authors of [25] propose several sampling-based
methods to capture the updated utility function. They develop an efficient algorithm for
generating top-k packages using the learned utility function, where the rank ordering
respects any of a variety of ranking semantics. Nevertheless, they do not tackle conflicts
in the user constraints, do not employ clustering to reduce uncertainty for new users,
and do not deal with the problem of appropriately initializing their MCMC algorithm.

3 A Personalized Recommender System

An overview of our system is the following (Figure 1). When a user enters, we retrieve
the constraints derived from her previous interactions, and check if there are any con-
flicting constraints in order to handle them. Next we update beliefs by conditioning the
prior distribution with the aforementioned constrains. Subsequently, we rank our items
according to the posterior samples, and present the top k items to the user. We record
which of those items are being clicked on by the user, and assume that clicked items
are more appealing to her than un-clicked ones. We store the new constraints derived
from the feedback received, and progress to the next interaction. Finally, we form clus-
ters with the posterior samples from the already registered users on our system, and use
these with new users so as to reduce our initial uncertainty about them.

Model settings We assume that we are given a set of n items SI . Each item is be-
ing described by m features (f1, f2, ..., fm). For example, a feature of an item could
be the price, rating etc. Every item i ∈ I is described by an m-dimensional vector
(vi1, v

i
2, ..., v

i
m), where vij corresponds to the value of the respective feature fj . For ev-

ery user we have a constraint set based on the feedback that we have received from her.
Every constraint has the following form: ik � it where ik, it are items in SI .

Our proposed model needs all of our items i ∈ SI in our database to be normalized.
To achieve that, we found the maximum and the minimum values of each item feature,
and then for each item feature value vij we normalize its value: vij ←

vi
j−min(vj)

max(vj)−min(vj)
,

where min(vj) and max(vj) are the min and max values of the respective j feature in
SI . After normalization, all items’ feature values lie in [0, 1].

Utility Function The user-specific utility function U over items i ∈ SI , that we wish to
learn, directly depends on its feature vector. The space of all mappings between possible
combinations of the feature values and utility values is uncountable, making this task
challenging. Since we need to express the structure of an item concisely, we assume
that the utility function is linearly additive and governed by a weight vector. This is a
structure for the utility function commonly assumed in practice [8, 15]. For each item,
the utility function is computed as follows:

U(i) =

m∑
j=1

wjv
i
j (1)
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Fig. 1: Model Overview.

where vij is the value of the respective feature, and wj is the weight value associated
with this feature. The value for m depends on the number of features that each item
has. Each wj takes values in [-1, 1]. A positive wj weight means that larger rather than
smaller values are preferred for the corresponding feature, a negative wj weight means
that smaller rather than larger values are preferred for the corresponding feature, while
a zero weight means that the user is indifferent about the specific feature.2 Our final
goal is to learn the weight vector and suggest items to the user that have the maximum
utility taking into consideration this weight vector.

Users often only have a rough idea of what they want in a desirable item, and also
find such preference very difficult to quantify. For this reason, users are not able to
specify or even know the exact values of the wj weights that drive utility function U .
We model this uncertainty in a Bayesian manner, assuming that the vector of weights,
w, is not known in advance, but it can be described by a probability distribution Pw.
We model this distribution as a multivariate normal. Such a distribution is often used
to describe, at least approximately, any set of (possibly) correlated real-valued random

2 To illustrate, assume a “hotel price” is “low”, say 0.1. If the user prefers really cheap hotels,
she might have a weight of −0.9 for “hotel price”, thus deriving a higher utility for this hotel
compared to that derived for an expensive hotel of price, say, 0.9 (since −0.09 > −0.81).
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variables, each of which clusters around a mean value (see also the work of [3]). The
Pw can be learned by the feedback received.

3.1 Constraints

We now discuss how to generate constraints to reduce our uncertainty over weight vec-
tors. To begin, our system suggests to the user a number of items, and we record which
of them are being selected (clicked on) by the user. We make the assumption that clicked
items are more appealing to the user than the un-clicked ones.3 Thus, the feedback in
form of new clicks, produces a set of pairwise preferences as follows. Assume that we
present three items, (i1, i2, i3), to a user, each of which has (the same) three features
(f1, f2, f3). If a user selects the second item, we can derive the following pairwise pref-
erences: i2 � i1 and i2 � i3 (to put this otherwise, the user’s selection is translated to
U(i2) > U(i1) and U(i2) > U(i1)). We can use, e.g., i2 � i1 to get:

U(i2) > U(i1) (2)

⇒
m∑
j=1

wj ∗ vi2j >

m∑
j=1

wj ∗ vi1j (3)

⇒ w1 ∗ vi21 + w2 ∗ vi22 + w3 ∗ vi23 >

w1 ∗ vi11 + w2 ∗ vi12 + w3 ∗ vi13
(4)

The feature values of each item are known in advance, but we do not know the
weights. We can focus on possible weight vectors by employing the following lemmas:

Lemma 1 [25]: Given feedback i1 � i2, if i1 � i2 does not hold under the weight
vector w, Pw(w|i1 � i2) = 0.

That is, every feedback received in terms of clicks, rules out all the weight vectors
that do not satisfy the generated constraint. Additionally,

Lemma 2 [25]: The set of valid weight vectors which satisfy a set of preferences forms
a convex set. So valid weight vectors form a continuous and convex region.

Handling Conflicting Constraints A major challenge encountered is that, after a few
interactions with our system, some of the generated constraints may have conflicts with
newer ones (a) when the user changed radically his preferences; or (b) if we have gath-
ered too many constraints, and cannot find a weight vector that satisfies all of them at
the same time. To deal with this problem we used a well-known linear programming
algorithm, Simplex [10]. We employ Simplex in order to find whether a feasible weight
vector is available. In the case Simplex returns that there is no feasible weight vector
which satisfies all constraints, we remove the oldest constraint we have gathered and
rerun the Simplex algorithm. We do this as many times required to get a valid weight
vector; notice that this process always leaves the set of constraints with at least one
member, thus Simplex never faces the degenerate case of dealing with an empty con-
straints set. In this way, the set of constraints we have stored is always free of conflicts.

3 Moreover, all clicked items are originally equally appealing. However, as interactions with the
system increase, beliefs about the desirability of the items get updated.
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3.2 Beliefs updating

Even if the prior distribution is a “nice” one with a compact closed form representation,
the posterior distribution can be quite complex [19, 8]. Refitting the weight distribution
Pw after each feedback from the user would be a very inefficient and time-consuming
task for a real-time recommender. We avoid this by employing the sampling-based
framework of [25]: items preferences resulting from user feedback can be readily trans-
lated into constraints on the samples drawn from Pw. In our approach we follow a
technique that is also used in the work of [8] and [25]: we condition our weights prior
distribution with the constraints derived from each user in order to acquire samples from
the posterior via employing MCMC, as we detail below. Note that if the amount of the
feedback received is small, simple sampling techniques like the popular rejection sam-
pling [13] could be effective. But as the feedback increases, those sampling methods
prove to be inefficient, because the valid convex region drastically shrinks. Sampling
techniques like MCMC are more suitable for cases like this, because they are ‘aware’
of the feedback received, and can handle cases with higher dimensionality [25].

A major problem encountered in the sampling process was that in order for our
MCMC algorithm to start collecting samples from the posterior distribution, it needs to
start from a point that is located inside the valid convex region. Otherwise, the Markov
chain remains stuck to the initial point. To overcome this problem we used Simplex
algorithm. More specifically, for each constraint ij > ik, we introduce a variable εt so
that we have:

U(ij) > U(ik) + εt (5)

and the objective function that we want to maximize is

max

T∑
t=1

εt (6)

where T is the number of the constraints. This results in finding a weight vector that is
closer to the center of the convex region. Otherwise, if we start from a ’bad’ location in
the distribution (the limits of the convex region), the sampler spends the first iterations
to slowly move towards the main body of the distribution. With Simplex we were able to
find a starting point that does not violate our constraints, which was necessary in order
to iterate and start collecting posterior samples. After initiating the algorithm with a
Simplex sample, we are ready to carry out the main sequence of its MCMC steps.

Metropolis Hastings Algorithm We first construct a regular grid in them-dimensional
hypercube, where m is the number of features that each item has. Each wi takes values
in [-1, 1] and our grid interval is set to 0.02. The main loop of our Metropolis-Hastings4

is known Algorithm 1 consists of three components:

1. Generate a proposal (or a candidate) sample xcand.

4 We note that ours is essentially a standard version of the Metropolis-Hastings algorithm, which
is known to be almost always convergent [21].
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ALGORITHM 1: Our Metropolis Hastings Algorithm
Initialize x(0) with the sample from Simplex Algorithm;
i = 1;
repeat

With p = 0.5 accept the current sample xi; continue;
Propose: xi ∼ Stochastic walk (described in text) ;
Acceptance Prob: α(xi|xi−1) = min(1, π(xi)

π(xi−1)
);

p∼Uniform(0, 1);
if xi satisfies all constraints and p < α then

accept xi,
else

accept xi−1,
end

until i >= numberofsamples;

2. Compute an “acceptance probability” α for the candidate sample, via a function
based on the candidates’ distribution (usually termed the proposal distribution),
and the full joint density. In fact, we use an estimate of the probability density
function that corresponds to a clustering of the prior samples we have gathered
from previous interactions.5

3. Accept the candidate sample with probability α, the acceptance probability, or re-
ject it with probability 1− α.

Specifically, we choose a candidate as follows. With probability 0.5 we keep the old
sample xi−1, and with the remaining probability, xcand (or xi as in Algorithm 1) is
chosen with a stochastic walk from among xi−1’s 2m neighbours as follows. After
choosing (uniformly) the neighbour that we will visit first, we move forward with 0.5
probability; and move backwards with 0.5 probability also. After we have chosen the
direction, we choose the number of steps that we are going to move in the grid. With 0.9
probability we move one step in the grid. With probability 0.1, we choose to move, with
equal probability, either 2*step, 3*step or 4*step. We observed empirically that making,
with small probability, relatively bigger ”jumps” in the grid, helps in preventing the
Markov chain from getting stuck in a particular part of the distribution. All probability
values above were chosen empirically.

The next step after choosing xcand, is to check if it satisfies all generated constraints.
If this sample violates one or more constraints, then we reject it and we keep the old
one; otherwise we decide whether to keep it based on the acceptance function. After we

5 In some detail, we divide each of the m dimensions into a fixed number of “segments”—ten
(10) in our implementation—and use this segmentation to generate “buckets” to place our
samples into. In this way, we create 10m buckets in total: for instance, if we had only two
dimensions, e.g. “price” and “distance to city center”, we would be creating 100 buckets.
Then, each prior sample is allocated to its corresponding bucket, based on Euclidean distance.
When Algorithm 1 picks a sample, it checks which bucket it belongs to, and uses the number
of samples in the buckets to estimate the π(·) density in Eq. 7. Thus, this method uses the prior
samples to estimate the posterior joint density.
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start collecting samples from the posterior, to avoid collecting samples that are highly
correlated, it is common to pick a subset of them. So we introduce a “lag” parameter,
set to 100 iterations in our implementation.

Now, there are mainly two kinds of “proposal distributions”, symmetric and asym-
metric. A proposal distribution is a symmetric distribution if: q(xi|xi−1) = q(xi−1|xi)
Standard choices of symmetric proposals include Gaussians or uniform distributions
centered at the current state of the chain. Here we work with a symmetric (uniform)
proposal distribution, as it makes the algorithm more straightforward, both concep-
tually and computationally. In cases with symmetric distributions like ours, the latter
simplifies to [9]:

α(xi|xi−1) = min(1,
π(xi)

π(xi−1)
) (7)

where π(·) is the full joint density. Simply put, when the proposal distribution is sym-
metric, the probability α becomes proportional to how likely each of the current state
xi−1 and the proposed state xi are under the full joint density.

3.3 Ranking the Items

The ultimate goal of a recommender system is to suggest a short ranked list of items,
namely the top-k recommendations that are ideally the most appealing for the end user.
A framework based on utility function, like ours, essentially defines a total order over all
items. Moreover, a recommender naturally faces the dilemma of recommending items
that best match its current beliefs about the user, or items that could improve user satis-
faction and help form more accurate beliefs. This corresponds to the typical exploration
vs exploitation problem in learning environments [23]. Although several ranking meth-
ods exist, there is no universally accepted ranking semantics given the uncertainty in
the utility function. In our work, we use a ranking method based on expectation, used
widely in the AI literature (see, e.g., [5, 7, 23]).

Ranking based on the Expectation algorithm The expectation algorithm (Exp) is
defined as follows [25]. Given an item space I and probability distribution Pw over
weight vectors w, find the set of top-k items with respect to their expected utility value.
More specifically, for each item and every (sample) weight vector, we calculate its util-
ity Uwl

(i) under each sample wl vector, using Equation 1. Subsequently, the expected
utility value for each item i can be calculated given Uwl

(i) , and the probability of the
corresponding wl weight vector:

EU(i) =

L∑
l=1

Uwl
(i) ∗ Prob(wl) (8)

where L is the number of sample weight vectors. Finally, we sort the dataset in ascend-
ing order according to the items expected utility, and present the top k ranked items to
the user, after adding an explicit exploration component as follows.
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Suggesting Items It is very important to introduce an exploration component in the
system. User preferences are in many cases very complex and difficult to map com-
pletely. We confront this challenge by presenting some6 random items along with those
that the Exp algorithm returns. Those items serve the purpose of correcting the bias in-
troduced from the initial distribution of Pw and combating mistakes and noise from user
feedback. Moreover, the uncertainty inherent in the utility function aids exploration, in
a true Bayesian manner.

Now, a recommender makes suggestions to the user based on knowledge acquired
through user’s previous interactions with the system. A major problem occurs when
we have gathered little or no data on what the user prefers. In those situations, the
suggestions made, could be almost “blind”. Such a process would converge slowly,
and especially the initial beliefs could be far from the user’s true preferences. In what
follows, we propose a solution to address this problem.

3.4 Clustering

It is often the case in recommender systems that we have no knowledge of the prefer-
ences of a user, or that we have not gathered enough constraints in order to limit the
uncertainty that the weight distribution Pw has. This is the notorious “cold start” prob-
lem. The most common approach to tackle this problem is to randomly suggest items
to the user in order to receive feedback and update the distribution. However, this has
the disadvantage that suggested items in the initial interactions, might be far from the
users’ true preferences and this could result in producing suboptimal recommendations
and therefore slow convergence of the weight distribution. Thus, instead of recommend-
ing random items in the initials interactions, we make use of a novel method that em-
ploys“clustered” weight vectors from other, existing users (essentially recommending
items matching the preferences of corresponding formed user categories).

Employing the Clusters Every time we run Metropolis-Hastings to derive posterior
samples for a user, we save those samples to our database. After having collected sev-
eral weight vector samples from the posteriors of existing users, we cluster them into
k groups (k being the number of recommendations made to a user in every interac-
tion) using the popular k-means algorithm [16]. As mentioned, we use them to address
scenarios of limited or no information regarding a new user. Instead of considering all
weight vectors as candidates, we use the clusters’ centroids, and suggest to the new
user the most “appropriate” items given the preferences of each group. Specifically, the
k clucster centroids are used in the ranking algorithm, to rank and present to new users
the items that are best fits for the clusters’ centroids. By suggesting items based on
the cluster centroids, and receiving feedback from the user, we drastically decrease the
uncertainty that we have about their preferences, as demonstrated in our simulations.7

6 Specifically, 2 out of 7 items presented to the user are chosen randomly; see section 4.2 below.
7 The idea of employing clustering to address the “cold start” problem has also appeared in [26].

However, that work uses averaging over user ratings to produce recommendations that are
appropriate for each cluster. In our work, we make no use of user ratings over items, and make
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4 System Evaluation

In our work we used a real-world (anonymized) dataset consisting of 5000 hotels in the
city of Paris, retrieved from a popular international hotel booking website in JSON for-
mat. In order to compose a user’s preferences, we focus on the following hotel features:
the price per day, the number of hotel ’stars’, the rating it has received from clients8,
the distance from the city center, and the amenities that it has (e.g., breakfast, pool, spa
etc). The features we focused on were chosen or made quantifiable. In our experiments,
we assume that the user has chosen her destination, and we try to learn her preferences
in order to make personalized recommendations, so that she should not need to search
manually through the thousands of hotels available. Our users are synthetic: this al-
lows us to measure our model’s effectiveness more accurately, since we can compare
recommendations to the “true” user preferences (which we have perfect knowledge of).

4.1 Building the Synthetic Users

We generated 100 simulated users that was used in order to evaluate our system’s per-
formance. Their preferences values were sampled from distributions. It was important
that the simulated users represented as best as possible the preferences of the real users,
in order to have a realistic assessment of the model performance. By creating the user
preferences by sampling distributions, we introduce an uncertainty necessary to account
even for users with unconventional preferences. The preferences of each user consist of
five values.

After sampling the distributions we normalize all preferences values to lie in the
[0, 1] interval. In order to determine the price per day that a user is willing to pay for
a hotel, we were inspired by the income distribution of the UK citizens for the year
2011.9 Thus, for extracting the price preference, we used a Burr type XII distribution
(a = 25007, c = 2.0, k = 2.0). To derive the hotel’s stars preference, we assume that if
the ’can pay’ price is high, then it is expected that a hotel with a high number of stars
(4-5) is preferred, so we sample a Beta distribution with the following parameters a =
8, b = 2. Respectively, we use a Beta with parameters a = 2, b = 8 if the price value is
low. Otherwise, we take sample from a Beta distribution with a = 8, b = 8. Here, we
choose a Beta distribution, as we want the number of stars to have mean values between
zero and one. Additionally, such distributions are more appropriate for modelling un-
certainties in the real world, as they can concentrate probability in a desired range [11].
Subsequently we choose to sample a Beta distribution with parameters a = 1, b = 3
in order to derive the proximity to the city center preference. Using this distribution we
want to simulate most people’s tendency to prefer a hotel near the city center rather than
in the countryside. A sampled value closer to zero corresponds to a preference for a ho-
tel close to the center, while value closer to 1 means the opposite. In order to specify the

recommendations based on the clusters’ centroids rather than employing some averaging-over-
cluster-contents process.

8 Note that “clients’ rating” is just an item’s (a hotel’s) feature. We stress that we do not ask our
system’s users to rate the items, and it is not the system’s aim to produce recommendations
based on such ratings.

9 https://www.gov.uk/government/statistics
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value of ‘ratings by previous guests’ value a user demands, we used a Beta with param-
eters a = 6 and b = 2. We choose this distribution in order to simulate the tendency that
most users prefer hotels with high ratings. Finally, the last feature that characterizes the
user preferences was the required hotel amenities. To derive the “amenities” preference,
we used a uniform distribution in [0, 1], with a higher number meaning that a hotel with
more amenities is preferred. All amenities are assumed to have equal impact on a user.

4.2 Experiments and Results

In our experiments we used the synthetic users described above, each of whom had
twenty (20) interactions with our system. In each interaction, seven (7) hotels are rec-
ommended to the user, and she chooses one. Five (5) of those are the top ranked ones
according to our current beliefs regarding user preferences, while two (2) are picked
completely randomly from our dataset. The choice made by the user is based on Eu-
clidean distance:

d(h, u) =

√
(hF1 − uF1)

2
+ · · ·+ (hFn − uFn)

2 (9)

where hF1, hF2, ..., hFn the values of the corresponding features of the hotel, and
uF1, uF2, ..., uFn are the actual user preferences. Thus the user will always choose
the hotel with the minimum Euclidean distance from her preferences.

Selection = min(d(h1, u), d(h2, u), ..., d(hk, u)) (10)

where k is the number of suggestions made to the user. In all experiments, our rank-
ing algorithm uses 50 samples randomly picked from 10000 samples returned by the
MCMC algorithm. This allows us to keep response time under 2 sec, on a PC with an
i7@4.5GHz processor and 16GB of RAM.

Regarding our results, we first report the (average) mean square error (MSE) for
each user interaction, calculated given the user’s true value function and her “ideal”
choices. This helps us assess the accuracy of the recommendation made as the interac-
tions increases. As seen in Figure 2, the MSE of our method drops quite sharply, after
only a few interactions.

The use of MSE does provide us with an insight of the overall method performance.
We can provide further testimony to the effectiveness of our approach, however, by us-
ing the following “metric”. For each simulated user, we found and saved the “top 200”
ranked hotels for the 5000 hotels of our dataset, based on the minimum Euclidean dis-
tance from the user’s true preferences. Then, we were able to compare the suggestions
our model made with the top 200 hotels for each user. As shown in Figure 3, after only
five interactions, our system was able to recommend hotels with 38% of them being
among the best 200 hotels of each user (38% of the hotels suggested during the last 15
interactions were in the “top-200”). Note that the “top-200” constitutes only 4% of our
dataset of 5000 hotels. Similarly, about 20% of the recommended hotels belong in the
“top 50” (1% of our dataset), and 8% belong in the “top 10” (0.2% of our dataset).

We also report on the observed performance when using clustering to reduce our
initial uncertainty regarding a user. In Figure 2, we observe a faster reduction of the
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Fig. 2: Mean Squared Error with and without clustering.

Fig. 3: Performance wrt to a user’s true preferences (averages).

MSE when clusters are used. Naturally, in the long run the MSE converges to the same
low value, with and without clustering (the latter loses its importance once enough
information is available).
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5 Conclusions and Future work

In this work, we presented a lightweight recommendation system which uses a Bayesian
preference elicitation framework, and applied it in the online hotel booking recommen-
dations domain. The algorithm makes personalized recommendations, is simple and
fast, but still generic and effective. Our system is non-intrusive, and does not ask the
user to rate items. It tackles conflicting user preferences and the problem of having
scarse information about a user, while it possesses a simple exploration component.
Our simulation experiments confirm the effectiveness of our method.

There are many possible extensions to this work. An obvious future step is to di-
rectly compare its effectiveness against other hotel booking recommender systems. This
is however a non-trivial task, given that most existing systems are not open-source or
fully described in research articles, and thus a direct comparison with the same dataset
and user pool is next to impossible to conduct. Another direction we aim to take is ex-
perimenting with real users, employing questionnaires in order to evaluate and measure
the system’s performance. Additionally, it is very common that a user is affected by
unexpected factors or unquantifiable features such as the presentation of the item or the
available pictures. For instance, in a booking recommendation scenario like ours, the
user may not choose based solely on features: on the contrary, she may get influenced
by the beautiful photos of a hotel. There exist numerous works in the marketing and ad-
vertising domains that describe how the presentation of an item can strongly influence
the choices of a user. Thus, in order to take cases like these into account, we aim to
incorporate a noise model to simulate unexpected and unquantifiable factors affecting
user choices, and thus obtain a more realistic user preferences model.
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