Region Growing - Splitting

• Segmentation can never be perfect
 – there are extra or missing regions

• Correct the results of segmentation
 – delete extra regions or
 – merge regions with others
 – split regions into more regions

• Correction criteria:
 – significance (e.g., size)
 – homogeneity (e.g., uniformity of gray-level values)
Data Structures

• Represent the results of a segmentation
 – array representations (e.g., image grid)
 – hierarchical representations (e.g., pyramids, Quad Trees)
 – symbolic representation (e.g., moments, Euler number)
 – Region Adjacency Graphs (RAGs)
 – Picture Trees
 – edge contours
1. Image Grid

<table>
<thead>
<tr>
<th>b</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>
2. Pyramid

- Hierarchical representation: the image at k degrees of resolution
 - $n \times n$ image, $n/2 \times n/2$, $n/4 \times n/4$, …, 1×1 images
- A pixel at level i represents aggregate information from 2×2 neighborhoods of pixels at level $i + 1$
 - image is a single pixel at level 0
 - the original image is represented at level $k-1$
3. Quad Trees

• Hierarchical representation
 – a node represents blocks of white, black or grey pixels
 – blocks of grey may contain a mix of both white and black pixels

• Obtained by recursive splitting of an image
 – each region is split into 4 sub-regions of identical size
 – each gray region is split recursively as long as it is grey
 – white or black regions are not split further
Quad Tree Example

- Original grey image
- Split of a into 4 regions
- Split b grey regions; one is still grey
- Split last c grey region \rightarrow final quad tree
4. Picture Tree

• Emphasis on nesting regions
• A picture tree is produced by recursively splitting the image into component regions
• Splitting stops when with only uniform regions has been produced
5. Region Adjacency Graphs (RAGs)

- Adjacency relationships between regions
 - graph structures
 - nodes represent regions (and their features – see symbolic representations)
 - arcs between nodes represent adjacency between regions

- Dual RAGs: nodes represent boundaries and arcs represent regions separated by these boundaries
segmented image

Region Adjacency Graph (RAG)

Dual RAG
RAG Algorithm

• Create RAG from segmented image

1. take a region R_i
2. create node n_i
3. for each neighbor region R_j of R_i create node n_j
4. connect n_i with n_j
5. repeat steps 3-4 for each region until all regions have been considered
6. Symbolic representations

• Each region is represented by a set of features
 – Bounding Enclosing Rectangle
 – Orientation, Roundness
 – Centroid, First, Second and Higher order Moments
 – Euler Number
 – Mean and variance of intensity values
 – Relative distance, orientation, adjacency, overlapping etc.
Region Merging

• Two or more regions are merged if they have similar characteristics
 – mostly intensity criteria (mean intensity values)
 – more criteria can be applied
 – boundary criteria
 – combination of criteria
Region Merging algorithm

- **Input:** a segmented image and its RAG

1. for each region R_i (node n_i)
 a. take its neighbor regions R_j (node n_j)
 b. if similar* merge them to one
 c. update RAG (delete one of n_i, n_j and its arcs)
2. repeat until no regions are merged

* **Similarity Criterion:** similar average intensities e.g., $|\mu_i - \mu_j| < \varepsilon$, contour continuity etc.
Statistical Criterion for Region Similarity

- **Input**: region R_1 with m_1 points and region R_2 with m_2 points
- **Output**: determines whether they should be merged or not
 - **assumption**: image intensities are drawn from a Gaussian distribution

$$p(g_i) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(g_i-\mu)^2}{2\sigma^2}}$$

$$\mu = \frac{1}{n} \sum_{i=1}^{n} g_i \quad \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (g_i - \mu)^2$$
1. Statistical Criterion: Case H_0

- Regions R_1, R_2 must be merged to form a single region
 - the intensities of the new region are drawn from a single Gaussian distribution (μ_0, σ_0)

$$P_0 = P(g_1, g_2, \ldots, g_{m_1+m_2} \mid H_0) = \prod_{i=1}^{m_1+m_2} P(g_i \mid H_0) = \prod_{i=1}^{m_1+m_2} \frac{1}{\sigma_0 \sqrt{2\pi}} e^{-\frac{(g_i-\mu_0)^2}{2\sigma_0^2}} =$$

$$= \frac{1}{(\sigma_1 \sqrt{2\pi})^{m_1+m_2}} e^{-\frac{\sum_{i=1}^{m_1+m_2} (g_i-\mu_0)^2}{2\sigma_0^2}} \left(\frac{1}{(\sigma_0 \sqrt{2\pi})^{m_1+m_2}} e^{-\frac{m_1+m_2}{2}}\right)$$
2. Statistical Criterion: Case H_1

- R_1, R_2 should not merge
 - their intensities are drawn from two separate Gaussian distributions (μ_1, σ_1), (μ_2, σ_2)

\[
P_1 = P(g_1, g_2, \ldots, g_{m_1} \mid H_0, g_{m_1+1}, \ldots, g_{m_1+m_2} \mid H_1) =
\]
\[
P(g_1, g_2, \ldots, g_{m_1} \mid H_0) P(g_{m_1+1}, \ldots, g_{m_1+m_2} \mid H_1) =
\]
\[
\frac{1}{(\sigma_1 \sqrt{2\pi})^{m_1}} e^{-\frac{(g_i - \mu_1)^2}{2\sigma_1^2}} \cdot \frac{1}{(\sigma_2 \sqrt{2\pi})^{m_2}} e^{-\frac{(g_i - \mu_2)^2}{2\sigma_2^2}} = \frac{1}{(\sigma_1 \sqrt{2\pi})^{m_1}} e^{-\frac{m_1}{2}} \cdot \frac{1}{(\sigma_2 \sqrt{2\pi})^{m_2}} e^{-\frac{m_2}{2}}
\]
3. Statistical Criterion: Decision

- If the ratio L is below a threshold, there is strong evidence that R_1, R_2 should be merged.

\[
L = \frac{P_1}{P_0} = \frac{P(g_1, g_2, ..., g_{m_1} | H_0, g_{m_1+1}, ..., g_{m_1+m_2} | H_1)}{P(g_1, g_2, ..., g_{m_1+m_2} | H_0)} = \frac{\sigma_0^{m_1+m_2}}{\sigma_1^{m_1} \sigma_2^{m_2}}
\]
Region Merging With Boundary Criteria

• Two regions should merge if the boundary between them is weak

• Two Criteria:
 – the weak boundary is small compared to the boundary of the smaller region
 – the weak boundary is small compared to the common boundary
the regions **should not be merged** because the weak boundary is very short compared to the boundary of the smaller region

the two regions **should be merged** because the weak boundary is large compared to the boundary of the smaller region
Region Splitting

- If a region is not \textit{homogeneous} (uniform) it should be split into two or more regions
- Large regions are good candidates for splitting
 - e.g., start from the entire image as input
 - intensity criteria (variance of intensity values)
 - a problem is to decide \textit{how} and \textit{where} to split
 - usually a region is split into \(n \) equal-sized parts
Region Splitting Algorithm

- **Input**: initial segmentation and RAG or Quad Tree

 - for each region R_i in the image recursively perform the following steps

 - compute the variance σ_i of the intensities of R_i
 - if $\sigma_i > \varepsilon$* split the region into $n*$ equal parts
 - update RAG or Quad Tree

 * ε, n are user defined
Split and Merge

- Combination of Region Splitting and Merging for image segmentation

1. for each region R (or entire image)
 a. if R is not uniform split it into 4 equal parts
 b. update the RAG or Quad Tree
2. for each group of (e.g, 2 or 4) regions
 a. if merging criteria are met
 b. merge the regions
 c. update the RAG or Quad Tree
3. repeat steps 1, 2 until no regions are merged or split
More Segmentation Algorithms

- “Adaptive Split and Merge Segmentation Based on Least Square Piecewise Linear Approximation”, X. Wu, IEEE Trans. PAMI, No. 8, pp. 808-815, 1993
- K-means Region Segmentation Algorithm
- Hough Transform (find lines, circles, known shapes in general)
- Relaxation Labeling (edge, region segmentation)
Adaptive Split and Merge Segmentation Based on Least Square Piecewise Linear Approximation

• **Basic Idea**: Successive region splitting in many directions until some homogeneity criterion is met
1. Adaptive Split Criteria

- Let $G = g(x, y)$ be the original image
- G is split into k regions G_1, G_2, \ldots, G_k
 - produce k homogeneous regions
 - minimize a global criterion of homogeneity

$$\sum_{i=1}^{k} E(G_i) = \sum_{i=1}^{k} \sum_{x, y \in G} \left\{ g(x, y) - \mu(G_i) \right\}^2$$

$$\mu(G_i) = \frac{\sum_{x, y \in G_i} g(x, y)}{\|G_i\|}$$
2. Adaptive Split Satisfaction

- There are too many ways to split a region into sub-regions
 - accept only horizontal, vertical, 45° and 135° split directions
 - split at two directions at a time

\[
E(G) = \sum_{x,y \in G} \left(g(x,y) - \mu(G) \right)^2 > \varepsilon
\]

- Every region is split as long as
 - \(\varepsilon \) is user defined
 - at the end either \(E(G) < \varepsilon \) or \(G \) is one pixel
splitting produces convex regions
Recursive Optimal Four Way Split (ROFS) Algorithm

Function ROFS(G) {
 If \(E(G) < \varepsilon \) then return \((G)\)
 else {
 partition \(G \) into \(G_1 \) and \(G_2 \) by minimizing
 \[
 \sum_{i=1}^{k} E(G_i) = \sum_{i=1}^{k} \sum_{x,y \in G} \{g(x, y) - \mu(G_i)\}^2
 \]
 over all possible 45 * i degree cuts, \(i = 0,1,2,3\)
 ROFS(G_1)
 ROFS(G_2)
 }
}
the number of polygons which are produced depends on ε

Initial image

$\varepsilon_1 > \varepsilon_2$

243 polygons

1007 polygons
initial image

930 polygons

4521 polygons
Merging

• The number of polygons which are produced by ROFS can be very large
 – merge any two neighbor regions G_i, G_j satisfying $|\mu(G_i) - \mu(G_j)| < m$
 – m is the “merging parameter”
 – m is user defined
Merging: Problem 1

• Examine all pairs of regions to find whether they are neighbors
 – their number K can be very large
 – examine K^2 regions
 – is it possible to know in advance the pairs of neighboring regions?
 – Yes! through the Region Adjacency Graph (RAG)
Merging Using RAGs

• RAG is always planar with small degree e
 – algorithms from graph theory
 – small e: the algorithms are fast

Merging of G_i, G_j:
• update the RAG: keep one of the G_i, G_j and delete the other along with all its incoming and outgoing arcs
• complexity $O(Ke)$
Region Merging: Problem 2

• Specification of ε, m
 – user defined, by experimentation

• The performance of the method depends on ε, m

• The performance of the method does not depend on pixel intensity values
 – the method is robust against noise
K-Means Segmentation

• Segmentation as a classification problem
 – assume K regions, K known in advance
 – each pixels has to be classified as belonging to one of the K regions
 – a region is represented by its center
 – classification criteria: intensity, proximity
 – each pixel: (x,y,d) normalized in $[0..1]$
 – a pixel belongs to the region whose center (x_c,y_c,d_c) which is closest to it
K-means Segmentation Algorithm

- **Input:** N points $(x,y)_i \leftrightarrow S_i$ centers of K regions
 - a pixel is a triple $\vec{X} = (x, y, d)$
 - d: intensity

1. Classify image pixels: $\vec{X} \in S_i \iff \|\vec{X} - \vec{Z}_i\| < \|\vec{X} - \vec{Z}_j\|$, $\forall i \neq j$

2. Compute N new points (centers)

 $$\vec{Z}_i = \frac{1}{N_i} \sum_{\vec{X} \in S_i} \vec{X} \iff \vec{Z} = \sum_{\vec{X} \in S} \frac{1}{\|\vec{X} - \vec{Z}\|}^2 : \min, i = 1,2...N_i$$

3. Repeat steps 1,2 until the centers do not change significantly (use a distance threshold) or until homogeneous regions $\sigma < \tau$
original image

$K=2, \sigma=4$

$K=2, \sigma=8$
original image

$K=2, \sigma=0.7^*$

$K=2, \sigma=4$

$K=2, \sigma=8$

$K=4, \sigma=0.7$

$K=4, \sigma=4$

$K=4, \sigma=8$

A. Matamis, Msc. Thesis Dept. of Electronic and Comp. Eng., TUC, 1996
Hough Transform (Duda & Hart 1972)

- Find Shapes whose curve can be expressed by an analytic function
 - find lines, circles, ellipses etc.
 - lines: \(y = mx + c \)
 - circles: \((x-a)^2 + (y-b)^2 = r^2 \)
- Works in a parametric space
 - \((x,y) \rightarrow (m,c)\) for lines (or \(\rho,\theta\))
 - \((x,y) \rightarrow (a,b,r)\) for circles
1. Line Detection

\[y = mx + c \]

\[c = -mx_1 + y_1 \]

\[c = -mx_2 + y_2 \]

\((c,m)\) is the same for the points of the same line

(c,m) is the same for the points of the same line
2. Line Detection Algorithm

- **Input**: Gradient \(\vec{\nabla} f(x, y) : (s(x, y), \theta(x, y)) \)
- **Output**: Accumulator Array \(A(m,c) \)

1. for each point in the Gradient image compute:
 a) \(M = \tan{\theta(x,y)} \)
 b) \(C = -mx + y \)
 c) update \(A(m,c) \): \(A(m,c) = A(m,c) + g(x,y)^* \)

2. points on a line update the same point in \(A(m,c) \)
 - lines: local maxima in \(A(m,c) \)

* \(g(x,y) \) intensity, strong intensity points contribute more
3. Circle Detection

- All Circles (x, y) \rightarrow 3-dim. space (a, b, r)
- Circles with fixed radius r \rightarrow 2-dimensional space

\[(x - a)^2 + (y - b)^2 = r^2 \]

\[\vec{\nabla} f(x, y) \]
4. Circle Detection Algorithm

- **Input:** Gradient $\nabla f(x, y) = (s(x, y), \theta(x, y))$
- **Output:** Accumulator Array $A(m,c)$

1. for each point (x, y) in the image compute:
 a) $a = x + r \sin \theta$
 b) $b = y - r \cos \theta$
 c) update $A(a, b) = A(a, b) + g(x, y)$

2. points on a circle update the same point in $A(a,b)$
 - to detect all circles, compute different $A(a,b)$ for different radius
 - this can be very slow
Hough Transform for detecting circles in an X-chest Radiograph (from Ballard And Brown)

accumulator array for \(r = 3 \)

results of maxima detection
Comments on Hough Transform

- **Pros:**
 - detects even noisy shapes
 - the shapes may have gaps or may overlap
 - effective for low dimensionality parametric spaces (e.g., 2, 3)

- **Cons:**
 - the shapes must be known
 - can be very slow for complex shapes
 - complex shapes are mapped to high dimensional spaces
Relaxation Labeling

- **Edge or Region** segmentation as a special case of pattern classification problem
 - *two classes:*
 - region/background for region segmentation
 - edges/background for edges segmentation
- **Probabilistic approach:**
 - initial probability estimates are revised in later steps depending on compatibility estimates
Edge Segmentation with Relaxation Labeling

• For each point \((x_i, y_i)\) on a Gradient image compute its probability \(P_i\) to belong to an edge
 – if point \((x_j, y_j)\) is very close to point \((x_i, y_i)\) and has large \(P_j\) to belong to an edge
 • then the two events \((P_i \text{ and } P_j)\) belong to the same edge) are compatible \(\Rightarrow\) increase \(P_i\)
 – if point \((x_j, y_j)\) is very close to point \((x_i, y_i)\) and has low \(P_j\) to belong to an edge
 • then the two events are incompatible \(\Rightarrow\) decrease \(P_i\)
General Relaxation Labeling Model

• Classify “Objects” $A_1, A_2, \ldots A_n$ to $C_1, C_2, \ldots C_m$ classes

• P_{ij}: Probability for A_i to belong to C_j

• $C(i,j;h,k)$: compatibility between P_{ij} and P_{hk}
 • $C(i,j;h,k) > 0$: compatible (increase probabilities)
 • $C(i,j;h,k) < 0$: incompatible (decrease probabilities)
 • $C(i,j;h,k) = 0$: don’t care (do nothing)
Adaptation of Probabilities

- Adaptation of P_{ij} due to P_{hk}:
 \[g_{ij} = C(i, j; j, k)P_{hk} \]

- Adaptation due to every other point:
 \[g_{ij} = \frac{1}{n-1} \sum_{h=1}^{n} \left\{ \sum_{k=1}^{m} C(i, j; h, k)P_{hk} \right\} \]

- At every step P_{ij} becomes
 \[P_{ij} = \frac{P_{ij}(1 + q_{ij})}{\sum_{j=1}^{m} P_{ij}(1 + q_{ij})} \]
Segmentation using Relaxation Labeling

• Two classes:
 ✓ Edge, Background
 ✓ Region, Background
• P_{i1}: pixel i belongs to class 1 (edge, region)
• P_{i2}: pixel i belongs to class 2 (background)
• $P_{i1} = 1 - P_{i2}$
 ✓ $P_{i1} = g_i / g_{max}$ where g_i: intensity of i and g_{max}: max intensity in the image
Edge Segmentation Example

- \(C(i,j;h,k) \) is defined only for the nearest neighbors
- \(C(i,j;h,k) = \cos(\theta_j - \theta_{ih})\cos(\theta_k - \theta_{ih}) \)
 - if \(\theta_j, \theta_k \parallel \theta_{ih} \) \(\Rightarrow C(i,j;h,k) = 1 \)
 - if \(\theta_j, \theta_{ih} \parallel \theta_{ih} \) or \(\theta_k, \theta_{ih} \parallel \theta_{ih} \) \(\Rightarrow C(i,j;h,k) = 0 \)
Raw edges. Initial edge strengths thresholded at 0.35 (removes some noise)
Results of relaxation segmentation after 5 iterations
Raw edges. Initial edge strengths thresholded at 0.25
Better initial estimates!!

Results after 5 iterations.
Notice the effect of having better initial estimates