Hashing

- Data organization in main memory or disk
 - sequential, indexed sequential, binary trees, …
 - the location of a record depends on other keys
 - unnecessary key comparisons to find a key

- The goal of hashing is to retrieve a record with a single key comparison
 - the location of a record is computed using its key only
 - good for random accesses (usually 1-3 comparisons)
 - slow for range queries
Hash Table

- **Hash Function**: transforms keys to array indices

\[h(key) : \text{Hash Function} \]

\[\begin{array}{c|c}
\text{index} & \text{data} \\
\hline
\end{array} \]

\[m \]

- \(n \)
<table>
<thead>
<tr>
<th>position</th>
<th>key</th>
<th>record</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4967000</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8421002</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>396</td>
<td>4618396</td>
<td></td>
</tr>
<tr>
<td>397</td>
<td>4957397</td>
<td></td>
</tr>
<tr>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>399</td>
<td>1286399</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>990</td>
<td>0000990</td>
<td></td>
</tr>
<tr>
<td>991</td>
<td>0000991</td>
<td></td>
</tr>
<tr>
<td>992</td>
<td>1200992</td>
<td></td>
</tr>
<tr>
<td>993</td>
<td>0047993</td>
<td></td>
</tr>
<tr>
<td>994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>995</td>
<td>9846995</td>
<td></td>
</tr>
<tr>
<td>996</td>
<td>4618996</td>
<td></td>
</tr>
<tr>
<td>997</td>
<td>4967997</td>
<td></td>
</tr>
<tr>
<td>998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>0001999</td>
<td></td>
</tr>
</tbody>
</table>
Properties of Good Hash Functions

1. Two records cannot occupy the same location
 - *hash collision:* \(\exists k_i \neq k_j, i \neq j : h(k_i) = h(k_j) \)
2. uniform: distributes keys evenly in hash space
3. perfect: \(\exists k_i \neq k_j, i \neq j : h(k_i) \neq h(k_j) \)
4. order preserving: \(\exists k_i \leq k_j, i \neq j : h(k_i) \leq h(k_j) \)

\[\nabla \] Difficult to find a hash function with these properties
 - property 1 is the most essential to good hashing
 - most functions are no better than \(h(key) = key \mod m \)
Collision Resolution Techniques

1. **Open Addressing** (rehashing): compute new position to store the key in the same table
 - no extra space, stores at most m records
 i. **linear probing**
 ii. **double hashing**

2. **Separate Chaining**: lists of keys mapped to the same position
 - uses extra space
 - can store more than m records (size of hash table)
Open Addressing

• Compute a new address to store the key
 – if it is occupied, compute a new address (rehashing)
 – if this is occupied too, compute a new address again (and so on) until an empty position is found
 – primary hash function: $h(\text{key})$
 – rehash function: $\text{rh}(i)=\text{rh}(h(\text{key}))$
 – hash sequence: $(h_0, h_1, h_2 \ldots) = (h(\text{key}), \text{rh}(h(\text{key})), \text{rh}(\text{rh}(h(\text{key})))), \ldots$

• Retrieval: to find a key follow the same hash sequence
Problem 1: Locate Empty Positions

- No empty position can be found
 i. the table is full
 • check the number of empty positions
 ii. the hash function fails to find an empty position although the table is not full!!
 • $h(key) = key \mod 1000$
 • $rh(i) = (i + 200) \mod 1000 \iff$ checks only 5 positions on a table of 1000 positions
 • use $rh(key)$ that checks the entire table
 • $rh(i) = (i+c) \mod 1000$ where GCD(c,m) = 1
Problem 2: Primary Clustering

- Keys that hash into different addresses compete with each other in successive rehashes
 - \(h(key) = key \mod 100 \)
 - \(rh(i) = (i+1) \mod 100 \)
 - keys: 990, 991, 992, 993, 994 \(\rightarrow\) 94
Problem 3: Secondary Clustering

- Different keys which hash to the same hash value have the same rehash sequence
 - \(h(key) = key \mod 10 \)
 - \(rh(i,j) = (i + j) \mod 10 \)

i. key 23:
 \(h(23) = 3 \)
 \(rh = 4, 6, 9, 3, \ldots \)

ii. key 13:
 \(h(13) = 3 \)
 \(rh = 4, 6, 9, 3, \ldots \)
(i) Linear Probing

- Store the key into the next free position
 - $h_0 = h(key)$ usually $h_0 = key \mod m$
 - $h_i = (h_{i-1} + 1) \mod m$, $i \geq 1$

$S = \{22, 35, 301, 99, 102, 452\}$
Observation 1

- Different insertion sequences \rightarrow different hash sequences
 - $S_1 = \{11,3,27,99,8,50,7,22,12,31,33,40,53\} \rightarrow 28$ probes
 - $S_2 = \{53,40,33,31,12,22,77,50,8,99,27,3,11\} \rightarrow 30$ probes

\[H(key) = \text{key mod 13} \]
Observation 2

• **Deletions are not easy:**
 – \(h(\text{key}) = \text{key mod 10} \)
 – \(rh(i) = (i+1) \text{ mod 10} \)

• **Action:** delete(65) and search(5)

• **Problem:** search will stop at the empty position and will not find 5

• **Solution:**
 – mark position as deleted rather than empty
 – the marked position can be reused
Observation 3

- **Linear probing** tends to create long sequences of occupied positions
 - the longer a sequence is, the longer it tends to become
 - P: probability to use a position in the cluster

\[P = \frac{B + 1}{m} \]
Observation 4

• Linear probing suffers from both primary and secondary clustering

• Solution: *double hashing*
 – uses two hash functions \(h_1, h_2 \) and a
 – rehashing function \(rh \)
Double Hashing

• Two hash functions and a rehashing function
 – primary hash function \(h_1(key) = key \ mod \ m \)
 – secondary hash function \(h_2(key) \)
 – rehashing function: \(rh(key) = (i + h_2(key)) \ mod \ m \)

• \(h_2(m, key) \) is some function of \(m, key \)
 – helps \(rh \) in computing random positions in the hash table
 – \(h_2 \) is computed once for each key!
Example of Double Hashing

i. hash function:
 - \(h_1(key) = key \mod m \)

\[
h_2(key) = \begin{cases}
m \div 2 & q = 0 \\
q & q \neq 0
\end{cases}
\]

 - \(q = (key \div m) \mod m \)

ii. rehash function:
 - \(rh(i, key) = (i + h_2(key)) \mod m \)
Example (continued)

A. \(m = 10, \ key = 23 \)

\[h_1(23) = 3, \ h_2(23) = 2 \]

\(rh: \ 5, \ 7, \ 9, \ 1, \ldots \)

B. \(m = 10, \ key = 13 \)

\[h_1(key) = 3, \ h_2(23) = 1 \]

\(rh: \ 2, \ 3, \ 4, \ 5, \ldots \)
Performance of Open Addressing

• Distinguish between
 – successful and
 – unsuccessful search

• Assume a series of probes to random positions
 – independent events
 – load factor: $\lambda = \frac{n}{m}$
 – λ: probability to probe an occupied position
 – each position has the same probability $P=\frac{1}{m}$
Unsuccessful Search

- The hash sequence is exhausted
 - let \(u \) be the expected number of probes
 - \(u \) equals the expected length of the hash sequence
 - \(P(k) \): probability to search \(k \) positions in the hash sequence
\[u = \sum_{k \geq 1} kP(k) = \]

\[P(1) + \]

\[P(2) + P(2) + \]

\[P(3) + P(3) + P(3) + \]

\[\cdots \]

\[P(k) + P(k) + \cdots + P(k) + \]

\[\cdots \]

\[\underbrace{P(\geq 1\ \text{probes}) + P(\geq 2\ \text{probes}) + \cdots} \]
\[u = \sum_{k \geq 1} P(\geq k \text{ probes}) = \]

\[\sum_{k \geq 1} P(\text{first } k - 1 \text{ positions occupied}) = \]

\[\sum_{k \geq 1} \lambda^{k-1} \leq \sum_{k \geq 1} \lambda^k \Rightarrow \text{independent events} \]

\[u = \frac{1}{1 - \lambda} \]

\(u \) increases with \(\lambda \) \(\Rightarrow \) performance drops as \(\lambda \) increases
Successful Search

- The hash sequence is not exhausted
 - the number of probes to find a key equals the number of probes s at the time the key was inserted plus 1
 - λ was less at that time
 - consider all values of λ

$$s = \int_{0}^{\lambda} \frac{1}{\lambda} (u + 1) dx = 1 + \frac{1}{\lambda} \ln\left(\frac{1}{1 - \lambda}\right)$$

u: equivalent to successful search

increases with λ
Performance

• The performance drops as λ increases
 – the higher the value of λ is, the higher the probability of collisions

• Unsuccessful search is more expensive than successful search
 – unsuccessful search exhausts the hash sequence
Experimental Results

<table>
<thead>
<tr>
<th>LOAD FACTOR</th>
<th>SUCCESSFUL</th>
<th></th>
<th>UNSUCCESSFUL</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LINEAR</td>
<td>i + bkey</td>
<td>DOUBLE</td>
<td>LINEAR</td>
<td>i + bkey</td>
</tr>
<tr>
<td>25%</td>
<td>1.17</td>
<td>1.16</td>
<td>1.15</td>
<td>1.39</td>
<td>1.37</td>
</tr>
<tr>
<td>50%</td>
<td>1.50</td>
<td>1.44</td>
<td>1.39</td>
<td>2.50</td>
<td>2.19</td>
</tr>
<tr>
<td>75%</td>
<td>2.50</td>
<td>2.01</td>
<td>1.85</td>
<td>8.50</td>
<td>4.64</td>
</tr>
<tr>
<td>90%</td>
<td>5.50</td>
<td>2.85</td>
<td>2.56</td>
<td>50.50</td>
<td>11.40</td>
</tr>
<tr>
<td>95%</td>
<td>10.50</td>
<td>3.52</td>
<td>3.15</td>
<td>200.50</td>
<td>22.04</td>
</tr>
</tbody>
</table>
Performance on Full Table

<table>
<thead>
<tr>
<th>TABLE SIZE (m)</th>
<th>SUCCESSFUL</th>
<th>UNSUCCESSFUL</th>
<th>LOG$_2$m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LINEAR</td>
<td>$i + b_{key}$</td>
<td>DOUBLE</td>
</tr>
<tr>
<td>100</td>
<td>6.60</td>
<td>4.62</td>
<td>4.12</td>
</tr>
<tr>
<td>500</td>
<td>14.35</td>
<td>6.22</td>
<td>5.72</td>
</tr>
<tr>
<td>1000</td>
<td>20.15</td>
<td>6.91</td>
<td>6.41</td>
</tr>
<tr>
<td>5000</td>
<td>44.64</td>
<td>8.52</td>
<td>8.02</td>
</tr>
<tr>
<td>10000</td>
<td>63.00</td>
<td>9.21</td>
<td>8.71</td>
</tr>
</tbody>
</table>
Separate Chaining

• Keys hashing to the same hash value are stored in separate lists
 – one list per hash position
 – can store more than m records
 – easy to implement
 – the keys in each list can be ordered
$h(key) = key \mod m$
Performance of Separate Chaining

- Depends on the average chain size
 - insertions are independent events
 - let $P(c,n,m)$: probability that a position has been selected c times after n insertions
 - $P(c,n,m)$ is also the probability that the chain has length c
 - $P(c,n,m)$ follows the binomial distribution

$$P(c,n,m) = \binom{n}{c} p^c q^{n-c}$$

- $p=1/m$: success case
- $q=1-p$: failure case
\[P(c, n, m) = \binom{n}{c} \left(\frac{1}{m} \right)^c \left(1 - \frac{1}{m} \right)^{n-c} = \]

\[
\frac{1}{c!} \frac{n}{m} \frac{n-c+1}{m} \left(1 - \frac{1}{m} \right)^{-c} \left(1 - \frac{1}{m} \right)^n
\]

\[
\frac{n-c+1}{m} \rightarrow \lambda
\]

\[
n, m \rightarrow \infty \quad \Rightarrow \quad \left(1 - \frac{1}{m} \right)^{-c} \rightarrow 1\quad \Rightarrow \quad P(c,n,m) = \left(\frac{1}{c!} \lambda^c e^{-\lambda} \right)
\]

Poison
Unsuccessful Search

• The entire chain is searched
 – the average number of comparisons equals its average length u

$$u = \sum_{c \geq 0} c P(c, l) = \sum_{c \geq 0} c \frac{\lambda}{c!} e^{-\lambda} = \lambda$$
Successful Search

• Not the whole chain is searched
 – the average number of comparisons equals the length s of the chain at time the key was inserted plus 1
 – the performance at the time a key was inserted equals that of unsuccessful search!

\[
s = \int_{0}^{\lambda} \frac{1}{\lambda} (u + 1) \, dx = \frac{1}{\lambda} \int_{0}^{\lambda} (x + 1) \, dx = 1 + \frac{\lambda}{2}
\]
Performance

• The performance drops with the length of the chains
 – worst case: all keys are stored in a single chain
 – worst case performance: $O(N)$
 – unsuccessful search performs better than successful search!! WHY ?
 – no problem with deletions!!
Coalesced Hashing

- The hash sequence is implemented as a linked list within the hash table
 - no rehash function
 - the next hash position is the next available position in linked list
 - extra space for the list

\[
h(key) = \text{key mod 10}
\]

<table>
<thead>
<tr>
<th>keys: 19, 29, 49, 59</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
initialization

<table>
<thead>
<tr>
<th>0</th>
<th>nilkey</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nilkey</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>nilkey</td>
<td>-1</td>
</tr>
</tbody>
</table>

initially: $avail = 9$

$h(\text{key}) = \text{key mod 10}$

keys: 14, 29, 34, 28, 42, 39, 84, 38

<table>
<thead>
<tr>
<th>0</th>
<th>nilkey</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nilkey</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>84</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>39</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>34</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>29</td>
<td>6</td>
</tr>
</tbody>
</table>

linked list
Performance of Coalesced Hashing

- **Unsuccessful search**
 \[\frac{1}{4} e^{2\lambda} - \frac{\lambda}{2} + 0.75 \text{ probes/search} \]

- **Successful search**
 \[\frac{e^{2\lambda} - 1}{8\lambda} + \frac{\lambda}{4} + 0.75 \text{ probes/search} \]
Hashing on the Disk

- Use **“disk pages”** or **“buckets”** to store records
 - several records fit within one bucket
 - first retrieve the appropriate page into the main memory
 - then searching for the appropriate record within the bucket comes for free
• page size b: maximum number of records in page
• space utilization u: measure of the use of space

$$u = \frac{\text{# stored records}}{\text{# pages} \cdot b}$$
Collisions

• Keys that hash to the same hash position are stored within the same page

• If the page is full, collisions cause

 i. *page splits*: split pages content between the old and a new page

 ii. *overflows*: list of overflow pages

• The larger the page size the less the overflows
Access Time

• Goal: find key in one disk access
 – access time ~ number of page accesses
 – many overflows cause more disk accesses
 – large u means good space utilization but many overflows
Problems

• File expansion (dynamic growth)
 – file size adapts to space requirements
• Searching with overflows \(\Rightarrow\) bad performance
• Non-uniform distribution of keys:
 – many keys map to the same addresses
• Categories of Methods
 – pseudo-dynamic: open addressing, chaining, …
 – dynamic: dynamic hashing, extendible hashing, linear hashing, spiral storage…
Dynamic Hashing Schemes

• Dynamic growth without total reorganization
 – typically 1-3 disk accesses to access a key
 – access time and space utilization are a typical trade-off
 – space utilization between 50-100%
 • typically 69%
 – not always easy implementation
Dynamic Schemes With Index

- At least two disk accesses
 - one to access the index and
 - one to access the data (overflows cause more disk accesses)
 - if we keep index in main memory → one disk access less
 - problem: the index may become too large

\[
\begin{array}{c}
\text{index} \\
\text{data pages}
\end{array}
\]

- Methods
 - Dynamic hashing (Larson 1978)
 - Extendible hashing (Fagin et.al. 1979)
Dynamic Schemes Without Index

- Ideally, less space and less disk accesses
 - at least one disk access
 - overflows are allowed \(\rightarrow\) more disk accesses

- Methods
 - Linear Hashing (Litwin 1980)
 - Linear Hashing with Partial Expansions (Larson 1980)
 - Spiral Storage (Martin 1979)
Hash Functions

• Support shrinking or growing hash file
 – shrinking or growing address space
 – the hash function adapts to these changes
 – hash functions using first (last) bits of key
 – key = $b_{n-1}b_{n-2}...b_i b_{i-1}...b_2b_1b_0$
 – $h_i(key) = b_{i-1}...b_2b_1b_0$ supports 2^i addresses
 – h_i: one more bit than h_{i-1} to address larger files

$$h_i(key) = \begin{cases} h_{i-1}(key) \\ h_{i-1}(key) + 2^i \end{cases}$$
Dynamic Hashing (Larson 1978)

- Two level index
 - *primary index* $h_1(key)$: accesses a hash table
 - *secondary index* $h_2(key)$: accesses a binary tree
• **Primary index is fixed**

 – $h_1(key) = \text{key mod } m$

• **Dynamic behavior on secondary index**

 – $h_2(key)$ uses i bits of key

 – the bit sequence of h_2 denotes which path on the binary tree of the secondary index to follow in order to access the data page

 – scan h_2 from left to right

 • bit 1: follow right path

 • bit 0: follow left path
\(h_1(\text{key}) = \text{key mod 6} \)
\(h_2(\text{key}) = 11 \ldots \leftarrow \text{depth of binary tree} = 2 \)
Insertions

• Initially fixed size primary index and no data

 - insert record: store in new page on h_1 location
 - if page is full, allocate one extra page and split contents of old page between old and new page
 - use one extra bit in h_2 for addressing
E.G.M. Petrakis

Hashing

1. h₁=0, h₂=any
2. h₁=3, h₂=any

index
storage

b

h₁=0, h₂=0
h₁=0, h₂=1
h₁=3, h₂=any
h₁=3, h₂=any
h₁=0, h₂=0
h₁=0, h₂=10
h₁=0, h₂=11
h₁=3, h₂=0
h₁=3, h₂=1

E.G.M. Petrakis

Hashing

49
Deletions

• Find record to be deleted using h_1 and h_2
• Delete record and
• Check “siblink” page:
 – less than b records in both pages?
 – if yes merge the two pages and delete one empty page
 – shrink secondary index by one level and reduce h_2 by one bit
Extendible Hashing (Fagin et.al. 1979)

• Dynamic hashing without index
 – primary hashing is omitted
 – hash function similar to secondary hash function and all binary trees at same level
 – the index shrinks and grows according to file size
 – data pages attached to the index
dynamic hashing

dynamic hashing with all binary trees at same level

address bits

extendible hashing
Insertions

- Initially 1 index and 1 data page
 - 0 address bits
 - insert records in this data page
• Page 0 overflows:
 – 1 more key bit for addressing, 1 extra page
 – index doubles!!
 – split contents of previous page into 2 pages according to next bit of key
 – global depth d: # index bits $\Rightarrow 2^d$ index size
 – local depth l: max # bits for record addressing

\[
\begin{array}{c}
\text{d} \\
0 \\
1 \\
\end{array}
\xrightarrow{1}
\begin{array}{c}
\text{l} \\
1 \\
\end{array}
\xrightarrow{1}
\begin{array}{c}
\text{l} \\
1 \\
\end{array}
\]

d: global depth = 1

l: local depth = 1
• **Page 0 overflows:**

 - $l \leq d$
 - Contains records with same 1st bit of key
 - Contains records with same 2 bits of key

• **Page 1 overflows:**

 - 1 more key bit for addressing
 - 2^{d-1}: number of pointers to page
• Page 100 overflows:
 – no need to double index
 – page 100 splits into two (1 new page)
 – local depth l is increased by 1

\[
2^{d-l} + 1
\]
Insertion Algorithm

• If \(l < d \) split overflowed page (1 extra page)
• If \(l = d \) double index, split page and

 – \(d \) is increased by 1 \(\rightarrow \) 1 more bit for addressing

 – update pointers with either way:
 a) if \(d \) prefix bits are used for addressing
 \[d = d + 1; \]
 for (i=2\(^d\)-1, i>=0,i--) index[i]=index[i/2];
 a) if \(d \) suffix bits are used
 for (i=0; i <= 2\(^d\)-1; i++) index[i]=index[i]+2\(^d\);
Deletion Algorithm

• Find and delete record
• Check siblink page
• If less than b records in both pages
 – merge pages and free empty page
 – decrease local depth l by 1 (records in merged page have 1 less common bit)
 – if $l < d$ everywhere \Rightarrow reduce index (half size)
 – update pointers
delete with merging

l < d

E.G.M. Petrakis
Hashing
Observations

- A page splits and there are more than b keys with same next bit
 - take one more bit for addressing (increase l)
 - if $d=l$ the index is doubled again!!
- Hashing might fail for non-uniform distributions of keys (e.g., multiple keys with same value)
 - if the distribution of keys is known, transform it to uniform
- Dynamic hashing performs better for non-uniform distributions (affected locally)
• Storage utilization:

\[u = \frac{b}{2b} = 50\% \]

After splitting

– in general \(50\% < u < 100\% \)

– on the average \(u \sim \ln 2 \sim 69\% \) (no overflows)
• Overflows – storage utilization:
 - allow overflows in order to achieve higher u and to avoid page doubling (if $d=l$)

 $u=\frac{2b}{3b}\approx 66\%$ after splitting
 - for smaller overflow pages (e.g., $b/2$) $u = \frac{(b+b/2)}{2b} \approx 75\%$
 - double index only if the overflow overflows!!
Performance of Extendible Hashing

• For n: records and page size b
 – expected size of index (Flajolet)
 \[
 \frac{l}{b \log 2} n \left(1 + \frac{1}{b}\right) \approx \frac{3.92}{b} n \left(1 + \frac{1}{b}\right)
 \]
 – 1 disk access/retrieval when index in main mem
 – 2 disk accesses when index is stored on disk
 – overflows increase number of disk accesses
Linear Hashing (Litwin 1980)

- Dynamic hashing scheme without index
- Indices refer to directly page addresses
- Overflows are allowed
- The file grows one page at a time
- The page which splits is not always the one which overflowed
- The pages split in a predetermined order
• Initially **n** empty pages
 – **p** points to the page that splits

![Diagram 1](image1)

• **Overflows** are allowed

![Diagram 2](image2)
• A page splits whenever the “splitting criterion” is satisfied
 – a new page is added at the end of the file
 – pointer \(p \) points to the next page
 – split contents of old page between old and new page based on key values
- b = b_{page} = 4, b_{overflow} = 1
- initially n = 5 pages
- hash function h_0 = k \mod n
- splitting criterion u > A\%
- alternatively split when overflow overflows, etc.
- Page 5 is added at end of file
- The contents of 0 are split between 0 and 5 based on hash function h_1
- p points to next page
Hash Functions for Linear Hashing

• Initially as simple as \(h_0 = key \mod n \)
• As pages are added, \(h_0 \) alone becomes insufficient
• The file will eventually double its size
• In that case use \(h_1 = key \mod 2n \)
• In the meantime
 – use \(h_0 \) for pages not yet split
 – use \(h_1 \) for pages that have already split
• Split contents of page pointed to by \(p \) based on \(h_1 \)
Hash functions (continued)

• When the file has doubled its size, \(h_0 \) is no longer needed
 – set \(h_0 \leftarrow h_1 \) and continue (e.g., \(h_0 = k \mod 10 \))
• The file will eventually double its size again
• Deletions cause merging of pages whenever a merging criterion is satisfied
 – merging criterion e.g., \(u < B\% \)
Hash functions for linear hashing

• Initially n pages and $0 \leq h_0(k) \leq n$
• Series of hash functions

\[
h_{i+1}(k) = \begin{cases}
 h_i(k) \\
 h_i(k) + n2^i
\end{cases}
\]

• Selection of hash function:

 if $h_i(k) \geq p$ then use $h_i(k)$

 else use $h_{i+1}(k)$
Linear Hashing with Partial Expansions (Larson 1980)

- **Problem with Linear Hashing**: pages to right of p delay to split
 - large chains of overflows on the rightmost pages
- **Solution**: do not wait that much to split a page
 - \(k \) partial expansions: take pages in groups of \(k \)
 - all \(k \) pages of a group split together
 - the file grows at lower rates
• Two partial expansions on a file with $2n$ pages
 – initially: n groups with $k=2$ pages each
 – groups: $(0, n) (1, 1+n) \ldots (i, i+n) \ldots (n-1, 2n-1)$

 – all pages of the same group split together: after the first split, pages 0 and 2n split together, some records go to page 2n (new page)
• **1st expansion**: after \(n \) splits, all pages are split
 – at the end of 1st expansion the file has 3\(n \) pages
 – the file grows at lower rate
 – the file has size 1.5 times larger

 \[\begin{array}{cccc}
 0 & n & 2n & 3n \\
 \end{array} \]

 – after 1st expansion take pages in groups of 3
 – groups: \((j, j+n, j+2n), 0 \leq j \leq n\)

 \[\begin{array}{cccc}
 0 & n & 2n & 3n \\
 \end{array} \]
• 2nd expansion: after \(n \) splits the file has size 4n
 – repeat the same process having initially 4n pages
 – 2n groups

2 pointers to pages of the same group
Relative file size vs disk access/retrieval for Linear Hashing with 2 partial expansions:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Linear Hashing</th>
<th>Linear Hashing 2 part. Exp.</th>
<th>Linear Hashing 3 part. Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>retrieval</td>
<td>1.17</td>
<td>1.12</td>
<td>1.09</td>
</tr>
<tr>
<td>insertion</td>
<td>3.57</td>
<td>3.21</td>
<td>3.31</td>
</tr>
<tr>
<td>deletion</td>
<td>4.04</td>
<td>3.53</td>
<td>3.56</td>
</tr>
</tbody>
</table>

Parameters:
- $b = 5$
- $b' = 5$
- $u = 0.85$
Dynamic Hashing Schemes

• Very good performance on membership, insert, delete operations
• Suitable for both main memory and disk
• **Critical parameter**: space utilization u
 – large $u \rightarrow$ more overflows, bad performance
 – small $u \rightarrow$ less overflows, better performance
• Suitable for direct access queries (random accesses) but not for range queries